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Abstract
Oil oxidation is an undesirable series of chemical reactions involving oxygen that degrades the quality of an oil. Oxidation 
eventually produces rancidity in oil, with accompanying off-flavors and smells. An electronic nose was used in this study 
to detect the adulterations in edible oils. The acidity, peroxide, anisidine and Totox values of the edible oil samples were 
measured according to the official American Oil Chemist Society (AOCS) standard. The results were analyzed using cluster 
analysis, principal component analysis, support vector machine, quadratic discriminant analysis, and Partial least squares 
regression technique. In the sensor array, the TGS2602, and MQ136 sensors had the highest values of the Loudness coef-
ficient and the MQ9, TGS822, TGS813, and TGS2620 had the lowest values. Based on the results obtained, the accuracy 
of the three methods; Support vector machine (SVM), Quadratic discriminant analysis and Partial least squares were 97%, 
98.33%, and 100%, respectively. The results for the linear vector kernel support machine, training accuracy and validation 
for C-SVM and Nu-SVM were 98, 97, 97 and 95%, respectively. The results also indicated that the proposed method can 
be used as an alternative to the official AOCS methods to innovatively detect the edible oil oxidation with high accuracy.
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Introduction

Lipid oxidation is one of the major causes of food spoil-
age especially in those containing oil [1]. Therefore, this 
parameter has been considered as one of the important qual-
itative criteria in the food industry. Oxidation may occur 
from processing to the storage of the edible oil. In addition 
to the production of peroxides, aldehydes, ketones, acids, 
and other small molecules, it can decrease the quality of the 
food products. Oxidation degree can be influenced by stor-
age conditions. When the oil is exposed to light and high 
temperatures, its oxidation will be increased [2].

The consumers’ preference for use of a specific type of 
edible oil maybe attributed to its aroma, taste and nutritional 
values. Regarding the serious health-threatening concerns, 

validation of the edible oil is one of the major issues in food 
product analysis [2].

American oil chemists’ society (AOCS) has developed 
various methods to evaluate the oxidation status of the oil for 
example to assess peroxide value (PV), acidity value (AV), 
Anisidine value (AnV) and Totox value. PV and AV have 
been widely employed in the edible oil industry and food 
processing. These chemical tests are not difficult; however, 
they are time-consuming, destructive as mentioned earlier. 
These methods also impose potential risks on human and 
environmental health due to their solvent wastes [3]. Spec-
troscopic methods such as MIST and FTIR have been also 
developed in recent years to assess the lipid oxidation. These 
methods, however, require substantial spectral pre-process-
ing to develop complex models [4].

Nowadays, extensive efforts have been dedicated to devel-
oping an electronic nose (E-nose) which can mimic the 
human smelling process and offer fast and low-cost infor-
mation to evaluate the food products freshness as well as 
monitoring the processes and controlling their quality [2]. 
The key advantages of the e-nose based solutions are ease 
of use, high sensitivity, high productivity, fast response, low 
cost, aptness of working with harmful chemicals, and prac-
ticability of superseding with panel of experts. E-nose is a 
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new technique among the various technologies available for 
detecting adulteration in foodstuff and can provide ample 
information for authorities for decision making [5].

The electronic nose includes a series of electrochemical 
sensors that can detect simple or complicated smells [6]. 
Digital outputs of the E-nose sensors should be analyzed to 
derive their useful information. Cluster analysis (CA), prin-
cipal component analysis (PCA), linear discriminant analy-
sis (LDA) and artificial neural network (ANN) and support 
vector machines (SVM) are among the methods most usually 
used in connection with e-noses [7, 8]. E-nose could be used 
for real-time monitoring of the volatile components of food 
to evaluate different attributes of the product.[9, 10]. Despite 
some achievements in the development of low-cost and com-
pact electronic noses, these devices are still expensive and 
have been developed for multiple tasks [5].

The application of the E-nose has drastically increased 
in the recent decade and has led to significant achievements 
in the food industry. Among these researches, evaluation 
of the edible oil authenticity to detect oxidation spoilage 
can be mentioned [11–15]. Moreover, E-nose was employed 
to detect lipid oxidation in soy oil [1], oxidation degree of 
ultra-virgin olive oil [16, 17] and auto-oxidation of canola 
oil [18], vinegar [19], tofu brine [20], large yellow croaker 
[21], Spinyhead croaker [22], Chicken [23], Wine [24], 
Magnolia biondii Pamp [25], and edible olive oil [26]. Xu 
et al. used a new method in 2016 to qualitatively analyze 
the edible oil oxidation by electronic nose. They employed 
an electronic nose in combination with CA, PCA and LDA 
methods to detect the oxidized and non-oxidized oils which 
resulted in inaccuracies of 95.8%, 98.9%, and 100%, respec-
tively [2].

According to previous reports and to the best of our 
knowledge, this study is the first research conducted on the 
use of E-nose combined with chemometrics methods for 
selection of an optimized gas sensors array to the detection 
of oil oxidation. The model performance was assessed by 
the official AOCS method. CA, PCA, SVM, QDA, and PLS 
techniques were applied for the qualitative differentiation 
oxidation in oxidized and non-oxidized oils.

Materials and methods

Sample preparation

In this study, first, liquid mixed edible oils (sunflower, can-
ola, and soy) with new production data and expiry dates 
were prepared from the local market in Kermanshah, Iran. 
The samples were kept in a dry and dark place at room tem-
perature (to minimize the physical and chemical changes) 
until the tests were conducted. Then, two oil samples were 
prepared using fresh and oxidized oils. Then, 20 mL of each 

sample was transferred to a 50-ML glass container at ambi-
ent temperature (23 ± 2 °C). The samples were equilibrated 
to the headspace for 50 min in a capped vessel. In total, 2 
types of oil (oxidized and non-oxidized) with 30 replicates 
for each sample were used.

Electronic nose

In this study, the electronic nose constructed in Razi Uni-
versity [27] was employed to detect oxidation edible oil. 
The employed system included two sections: hardware and 
software. The hardware section encompassed the data col-
lection system, sensors, sensors chamber, sampling chamber, 
voltage supply, joints and accessories, electric valves, air 
pump, and filter. The applied E-nose is schematically illus-
trated in Fig. 1. This system is equipped with a diaphragm 
pump (TYAP-127) with a flow of 1.3 L/min and a voltage of 
12 V to transfer the sample smell (headspace) to the sensors 
chamber. For automatic control of the system and attain-
ing the smell pattern, the E-nose was equipped with 3 one-
fourth-inch two-way electronic valves (UNI-DO 2/2) with 
stimulation voltage of 12 V whose voltage was decreased to 
5 V by a circuit [28]. The responses of the eight sensors were 
surveyed by a data collection system connected to a PC. The 
sensor array used in this study was composed of eight metal 
oxide semiconductor (MOS) sensors whose attributes are 
listed in Table 1.

The sampling process involved three stages: baseline cor-
rection, sample smell injection, and measuring and cleaning 
the sensor chamber with fresh air. Regarding the unique time 
of E-nose in each of these stages for each application, these 
stages will be re-timed by changing the application. In this 
study, the proper time was obtained after several tests and 
investigations of the response of the sensors. In the baseline 
correction stage, oxygen was passed over the sensors for 
200 s until the array response reached equilibrium. Upon 
injection of the sample smell to the sensors chamber, the 
output voltage of each sensor will be changed depending 
on the sensor type and sensitivity. This stage often lasts for 
150 s. In the last stage, oxygen was again passed over the 
sensors for 200 s to return the sensor’s response to the base-
line and prepare the system for the subsequent test.

The sensor’s responses were recorded and saved by a data 
collection system connected to a computer (NI USB 6009) 
which used a graphic link programmed by LABVIEW 2013 
software.

Feature extraction

The first step in data analysis is the pre-processing of the 
obtained signals to extract the data from the sensor’s response, 
improve the quality of the created database and prepare the 
data for the pattern analysis and detection stage [29]. The 
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proper choice of the pre-processing method is of crucial 
importance and could have a crucial impact on pattern detec-
tion performance [30]. Although the sensor technology can be 
to some extent effective on the method of preprocessing, three 
major stages could be considered for data preprocessing: base-
line correction, compaction, and normalization [29]. The base-
line correction stage is to compensate the nose and drift and 
increase the sensor response quality which is often employed 
for intrinsically large or small signals [31]. Various methods 
(i.e. discriminant, relative, and fractional) have been devel-
oped for baseline correction which can be employed depend-
ing on the type of applied sensors, sensor application, and the 
researchers’ preference [31]. Here, the fractional method was 
employed to correct the baseline. This method can also be 
used for data normalization and it has been widely employed 
for MOS sensors [29]:

(1)Y
S
(t) = X

S
(t) − X

S
(0)

In which  Ys (t) is the normalized response,  xs (o) denotes 
the baseline and  xs (t) represents the sensor response.

Data analysis methods

To analyze the pre-processed data, CA, PCA, PLS, QDA, 
and SVM techniques were applied. 70% of the data were 
used for training while 30% of them were employed for test-
ing. The cluster method is a classification method to allo-
cate similar entities and objects to the groups or clusters. 
Considering a series of objects and some of their similarity 
values, their ranking in the classification clusters or groups 
could be defined, CA is a technique aimed to divide the data 
to specific groups based on their similarity or distance [32]. 
The results of a hierarchical clustering method are often 
represented as a dendrogram [33]. The distance between 
different observations in the dendrogram can be measured 
to determine the similarity of the observations in terms of 
each property. This method calculates the distance between 
the individual data and the centroid by an intra-group 

Fig. 1  Schematic of olfactory 
system used. a Carbone active 
filter, b Sample, c Valve, d 
Pump, e Sensor array, f Date 
acquisition card, g PC and h Air 
outlet

Table 1  The used sensors in 
electronic nose

Sensor type Main applications Typical detection ranges (ppm)

MQ3 Alcohol 10–300
TGS822 Steam organic solvents 50–5000
MQ-136 Sulfur dioxide (SO2) 1–200
MQ-9 CO and combustible gas Co 10–1000, Cg 100–10,000
TGS813 CH4, C3H8, C4H10 500–10,000
MQ135 Steam ammonia, benzene, sulfide 10–10,000
TGS2602 Sulfide Hydrogen sulfide, ammonia, toluene 1–30
TGS2620 Alcohol, Steam organic solvents 50–5000
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covariance matrix. Each point will be then allocated to the 
nearest cluster [32]. In this research, Ward’s method (with 
the help of square Euclidian distance) was used to determine 
the membership cluster based on the nearest centroid order-
ing method.

PCA is an unsupervised pattern detection method with a 
perpendicular linear transforms, which transform the data to 
the new coordination system in such a way that the largest 
variance will be placed on the first axis, the second largest 
one will be placed on the second axis and so on. In this way, 
the data of a series could be simply visualized. Analysis of 
the major component s could reduce the data dimension. 
In this way, the components of the dataset with the highest 
impact on the variance will be preserved. This method has 
been widely employed to represent the E-nose response to 
simple and complicated smells and can provide some quali-
tative information for pattern detection [34, 35].

PLS is a linear and supervised multivariate calibration 
method that attempts to find factors (i.e., latent variables), 
which capture as much variance as possible in the predictor 
block X-matrix, under the constraint of being correlated with 
the predicted block Y-matrix [36].

Linear differentiation analysis (LDA) creates a linear 
combination of the attributes resulting in classification. This 
function increases the inter-group variance to the intra-group 
variance ratio. Transformations and transferring in this func-
tion are as follows: when a new observation is introduced, it 
reaches its maximum value to predict the inter-group differ-
ences [37]. Three methods including linear, quadratic, and 
mahalanobis are used for data classification by the LDA 
approach. LDA method was used for data classification 
along with quadratic analysis, which is abbreviated as QDA. 
This method has been widely applied in statistics, pattern 
identification, and machine learning to find a combination 
of unique attributes.

This is one of the most accurate data mining methods 
with two-class monitoring and classification with high gen-
eralizability which can be employed for classification of 
linear and nonlinear data [38]. In support vector machine 
(SVM), C-SVM and Nu-SVM are used to classify the data. 
The difference between these two methods is in their expres-
sion of the problem as an optimization problem and selection 
of Nu, C, and γ parameters to minimize the error function. 
C parameter in the C-SVM method is chosen to reduce the 
complexity of computations and reduce the noise in the data. 
The higher the C value, the lower the training error will be. 
However, the generalizability of the machine will be also 
declined. The increase of Nu in Nu-SVM during an increase 
of class separation will enhance the error [38].

One of the most powerful techniques in the field of 
chemometrics is factor analysis. This is a multi-variable 
method, which reduces the data dimension and minimizes 
the number of perpendicular vectors to offer important 

information. Partial lowest square is one of the main fac-
tor analysis approaches. The main factor or part is a linear 
combination of the major variables in the matrices. Instead 
of an i × j matrix (i is the number of characteristics and j is 
the number of sensors), its component can be defined as 
a linear combination of J factor; which finally gives rise 
to new variables for the matrices [39]. In the PLS method, 
instead of finding a plane of maximum variances between 
the responses and non-independent variables, a relationship 
is established between the major components. This method 
forms a linear regression model between the predicted vari-
ables and those observed in the new space [40]. Finally, a 
new regression model will be constructed between the input 
and output results by a PLS modeling process. The model 
performance can be evaluated by  R2 and RMSE [41, 42]:

where,  Sk,  Tk, and Tm are measured, predicted, and average 
predicted. All the analyses (PLS, SVM, LDA, and PCA) 
were implemented using Unscrambler × 10.4 software 
(CAMO AS, Trondheim, Norway).

Chemical analysis of the oils

Lipid oxidation is a dynamic equilibrium process in which 
the hydro-peroxides are the key mediators in controlling the 
auto-oxidation progress. Hydro-peroxide can continue to 
produce oxidation secondary products and degrade. Some 
of these breakdown products are volatile. Upon production 
of hydro-peroxides in a specific stage, volatile and non-vol-
atile substances are produced which are occur in the form 
of degradation and more accumulation of hydro-peroxides. 
The concentration of these volatile and non-volatile sub-
stances will increase which will be decelerated by the forma-
tion of the volatile substances [43]. The Chemical analysis 
includes measurement of different parameters, which will 
be discussed below. Peroxide index is a criterion to measure 
the hydro-peroxides. Free fatty acids are the consequence 
of enzymic hydrolysis of triglycerides in which heat and 
humidity play the role of catalysts. These compounds con-
tribute to auto-oxidation and give rise to products which 
are the main cause of unpleasant taste and smell in the oil 
products [44]. Hydro-peroxides are the primary product of 
the oxidation in oils and fats which can be degraded to vola-
tile and non-volatile secondary products. Peroxide index can 
be a proper indicator of the initial stages of oxidation [43]. 
AV or the free fatty acid value  (wFFA) indicates the level of 
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free fatty acid in the oil in the form of oleic acid (%); while 
PV indicates hydro-peroxide level (meq  O2/kg) which can 
be formed through oxidation during the storage process. 
AV and PV measurements were conducted according to the 
official AOCS methods [44]. Anisidine index indicates the 
secondary products of oxidation produced as the result of 
peroxide destruction [45]. AnV can be used to assess the 
aldehyde content (especially unsaturated α and β aldehydes) 
[46]. Totox index can be also calculated by the following 
equation [47]:

According to AOCS standards, the oils with PV ≤ 10 meq/
kg and AV ≤ 0.6 mg/g are defined as the non-oxidized oils, 
while the oils with PV 10 meq/kg and AV > 0.6 mg/g are 
considered as the oxidized [2]. According to the strict stand-
ard regulation in Iran, the oils with acidity index above 0.6 
and peroxide levels more than 5 are considered as the spoiled 
oil [48]. Chemical analyses were conducted in three rep-
licates for each sample. All the experiments were carried 
out in Mahidasht Kermanshah Vegetable Oil Agricultural 
Industrial. The statistical analyses were conducted using a 
completely randomized factorial test.

Results and discussions

The voltage responses of the sensors were measured in 30 
replicates for all the samples (Non-oxidized and oxidized). 
Finally, the responses of the sensor arrays were recorded for 
60 samples. The maximum response of each sample was 
extracted as the descriptor of the obtained signals. Then 

(4)Totox = 2 × (PV) + AnV

a 60 × 8 feature matrix (obtained from the samples) was 
used as the input for the data analysis. The responses of 
the applied sensors to different levels of oxidation of the 
edible oil are represent in Fig. 2. The difference in the output 
responses of the sensors in the measurement stage can be 
observed in the mentioned figure.

CA method results

The hierarchical CA method was used to classify 60 edible 
oil samples based on the responses of the 8-sensor array 
using squared Euclidean as the similarity distance and 
Ward’s clustering method as the amalgamation rule. The 
dendrogram of the CA method is shown in Fig. 3. As this 
figure suggests, the edible oil samples were divided into 2 
clusters with a distance of 4.9. The first cluster included 
non-oxidized oils while the oxidized oils were placed in the 
second cluster. Therefore, the CA method could offer an ini-
tial classification although the group divisions were different 
at different distances. Xu et al. [2] Classified the oxidized 
and non-oxidized oils with an inter-group distance of 5.01.

PCA method results

To detect oxidation in the edible oil samples, the PCA 
method was also applied. The score diagram of the two 
major components is represented in Fig. 4. This diagram 
is generally used to classify the separate data clusters to 
identify their patterns [29]. The first two major components 
described 99% variance of the dataset (PC1 = 98% and 
PC2 = 1%) for differentiating the different levels of oxida-
tion. According to the Score diagram, there is a good distinc-
tion between oxidized and non-oxidized oil samples.

Fig. 2  The responses of the electronic nose system to Different levels of oxidation on the edible oils: a Non-oxidized, b oxidized
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The role of each sensor in differentiating the samples can 
be studied by the Loading diagram [34]. For this purpose, 
the sensors were visualized in the loading diagram with their 
specific coefficients (Fig. 5). Higher loading of a sensor on 
a major component (more proximity to the outer circle) 
reflects its higher role in the detection and differentiation 
of the samples. According to the loading results, the sen-
sors with the lowest impact of detection and differentiation 
can be eliminated. This can reduce the complexity of the 
data analysis and also decline the construction cost of the 
sensor array [34]. The loading diagram of the two major 
components is depicted in Fig. 5. Accordingly, TGS2602 

and MQ136 had the highest loading coefficients and hence 
played the most significant roles in the sample differentia-
tion. Regarding high loading coefficients and proximity of 
these values for MQ136 and TGS2602 sensors in the loading 
figure, the responses of the sensors to the smell pattern of the 
headspace are presented using mean and standard deviation 
(Fig. 6). As can be observed, TGS2602 and MQ136 had the 
highest contribution in smell identification, respectively and 
are the best choices for detecting oxidation in the oil.

Ayari et al. [27] Also reported similar results regarding 
the oxidation detection in animal oil and edible oil [27, 28]. 
A lot of research has been done on various products by PCA, 
which can be referred to Ridgetail white prawn (Exopalae-
mon carinicauda) [49, 50], Large Yellow Croaker (Pseudos-
ciaena crocea) [21, 51], and Collichthys lucidus [22].

PLS method results

As TGS2602 and MQ136, sensors allocated the highest sig-
nificance in the loading diagram in PLS analysis. Regarding 
the high correlation between the measured and predicted 
values, the PLS method is highly capable of the best sensors. 
Using the PLS method, TGS2602 and MQ136 showed the 
highest correlation coefficient which is line with the loading 
diagram. The performance of this model was determined by 
calculating the determination coefficient  (R2) and root mean 
square error (RMSE) of Eqs. 2 and 3. In the PLS method, 
factor 1 and factor 2 covered 98% and 1% of the data vari-
ance (99% of total variance), respectively (Fig. 7).

Men et al. [52] used the PLS method combined with 
E-nose and managed to predict various ratios of old and 

Fig. 3  CA dendrogram responds to Non-oxidized and oxidized oil samples

Fig. 4  Score plot PCA analysis For different levels of adulteration
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Fig. 5  Loading plot for PCA 
analysis For different levels of 
adulteration

Fig. 6  Average response of the 
sensors versus pattern of the 
odor of sample head space

Fig. 7  Result of PLS regression in prediction of sensor response. a TGS2602, b MQ136
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fresh frying oils with an accuracy of 84%. Oussama et al. 
[53] Employed the PLS method to classify different percent-
ages of adulterations in olive oil with an accuracy of 99%. 
Mabood et al. [39] Applied the PLS method to predict differ-
ent percentages of adulteration in commercial sweeteners in 
the fruit juice. Moreover, Ghasemi-Varnamkhasti et al. [54] 
employed the PLS approach to classifying different cultivars 
of caraway with a precision of 100%. Tohidi et al. [55] Also 
reported similar results. Results of the previous studies, as 
well as the findings of this study, confirm the high precision 
of this method and its applicability in adulteration detection 
and classification of food products.

QDA method results

In order to detect oil oxidation, the LDA method was used 
for data classification along with quadratic analysis, which 
is abbreviated as QDA. The models’ input included the data 
obtained from eight sensors. All the data had a weight of 
one. QDA diagram of the E-nose signals for oxidation detec-
tion in oil is depicted in Fig. 8. QDA method exhibited an 
accuracy of 100%. As can be seen, the QDA method had 
the highest precision in the differentiation of fresh and oxi-
dized oil, and they are properly classified into two groups. 
Based on the sensor’s datasheet (Table 1), MQ136 can be 
used for the detection of SO2, and TGS2602 can be used 
for the detection of hydrogen sulfide, and ammonia which 
is related to the amount of sulfur which is added to the oil 
in the bleaching stage and ammonia is used as a conveni-
ent source of hydrogen for the hydrogenation of fats and 
oils. Finally, regarding the significant role of TGS2602 
and MQ136 sensors and high prediction capability of the 
QDA method, quality control managers and researchers can 

employ a combination of the QDA method and mentioned 
sensors to detect oil oxidation.

Olsson et al. [56] Reported a classification accuracy of 
81.1% for naturally infected barley samples. Donis-González 
et al. [57] Used different classifiers including support vector 
machine, LDA, QDA, and Mahalanobis distance that QDA 
had the highest overall performance accuracy. Mohammadi 
et al. [58] The best result for the classification of fruits was 
obtained by the QDA classification, with an accuracy rate 
of 90.24%.

SVM method results

For classification of the samples based on SVM, C-SVM, 
and Nu-SVM were employed. Nu, C, and γ parameters 
were found by trial and error and validated by minimi-
zation. The four types of kernel functions including lin-
ear, polynomial, radial basis function, and sigmoid were 
employed. 70% of the data were used for training while 
30% of them were employed for testing. The weight of all 
inputs was equal to one. The results of the SVM method 
are listed in Table 2. In Nu-SVM and C-SVM methods, 
linear function showed the highest accuracy in the detec-
tion of oxidation in oil. The results show that the C-SVM 
method is able to classify oxidized and non-oxidized oil 
with an accuracy of 98% for the training data and 97% for 
the Validation data. Also in Nu-SVM, method is able to 
classify oxidized and non-oxidized oil with an accuracy of 
97% for the training data and 95% for the Validation data. 
In addition, the linear function represented better results 
in detection than polynomial, sigmoid and radial basis 
function. Tohidi et al. [59] Classified different percent-
ages of formalin, hydrogen peroxide and sodium hypochlo-
rite in milk with accuracies of 94.64, 92.85 and 87.75%, 

Fig. 8  QDA analysis for Detec-
tion of oxidation in oil
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respectively with the use of SVM method. Chen et al. [60] 
Evaluated the quality of green tea using the SVM method 
with an accuracy of 100% for the training data and 95% for 
the test data. Nouri et al.[61] To classify different percent-
ages of cocoa in chocolate, they obtained a 100% detection 
accuracy. Also, in another study, they found 90% accuracy 
in detecting the quality of pomegranate fruit infected with 
fungal disease [62].

Chemical analysis of the oil

The major components of the oil samples were analyzed 
according to official AOCS methods after E-nose analysis. 
Variance analysis on the impact of samples on the acidity, 
peroxide, anisidine, and Totox is summarized in Table 3. 
It can be seen that the effect of the 4 components became 
significant at the probability level of 1%. The mean com-
parison Non-oxidized and oxidized oil for Anisidine 11.840 
and 8.563, Peroxide 1.693 and 9.333, Acetic Acid 0.055 
and 0.075 and Totox were 12.227 and 27.230, respectively. 
Totox index is a criterion of total oxidation including initial 
and secondary products of oxidation [43]. As the peroxide 
index is not a reliable index for the oil’s oxidation and it can 
be broken during the heat procedures, Totox index was used 
to calculate the oil oxidation [63]. As expected, spoiled oils 
had a higher Totox index compared to the fresh samples.

Conclusions

In this study, a portable 8-sensor E-nose was employed to 
investigate the oxidation degree of the edible oils. These 
results indicated that the application of E-nose in com-
bination with CA, PCA, SVM, QDA, and PLS technique 
could be a promising approach in the successful detec-
tion of oxidation in the edible oils. Eight sensors of the 
electronic nose exhibited different response signals to the 
oxidized oils, which were different from the non-oxidized 
one. Based on the findings of this study, it is suggested to 
use E-nose along within this study, a portable 8-sensor 
E-nose was employed to investigate the oxidation degree 
of the edible oils. These results indicated that the appli-
cation of E-nose in combination with CA, PCA, SVM, 
QDA, and PLS technique could be a promising approach 
in the successful detection of oxidation in the edible oils. 
The E-nose, which is similar to the human olfaction sys-
tem, requires no specific design to detect the volatile com-
pounds. This technique is superior over the conventional 
official method for the detection of oxidation degree in 
the edible oils as it is a non-destructive and time-saving 
method that reduced the use of toxic organic solvents. The 
result s of this study showed that the application of the 
proposed E-nose could decrease the dependence on the 
evaluator individuals or time-consuming data analysis to 
differentiate the oxidized oils from the non-oxidized ones.
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Table 2  Results and comparison 
of Nu-SVM and C-SVM models 
subjected to the kernel functions

Kernel function C-SVM Nu-SVM

c γ Accuraccy 
training

Accuraccy 
validation

Nu γ Accuraccy 
training

Accuraccy 
validation

Linear 0.75 – 98 97 0.1 1 97 95
Polynomial 0.5 0.125 96 95 1 1 95 95
Radial basis function 0.255 1 97 91 10 1 96 94
sigmoid 0.01 0.1 96 96 10 0.1 96 94

Table 3  Analysis Of Variance for the Chemical parameters of edible 
oil

**p ≤ 0.01

Sources Degrees of 
freedom

Mean square

p-Anisidine value Treatment 1 16.105**
Error 4 0.006

Proxide value Treatment 1 87.554**
Error 4 0.00025

Acetic acid value Treatment 1 0.001**
Error 4 0.00022

Totox value Treatment 1 216.612**
Error 4 0.012
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