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1  | INTRODUC TION

Regarding high rate of adulteration in food products, development 
of fast analytical methods to detect adulteration and verify the 
food product authenticity is of crucial importance (Peris & Escuder-
Gilabert, 2016). The consumers' preference for use of a specific type 

of edible oil may be attributed to its aroma, taste, and nutritional val-
ues. Regarding the serious health-threatening concerns, validation 
of the edible oil is one of the major issues in food product analysis 
(Xu, Yu, Liu, & Zhang, 2016).

Lipid oxidation is one of the major causes of food spoilage espe-
cially in those containing oil (Yang, Han, & Noh, 2000). Therefore, this 
parameter has been considered as one of the important qualitative 
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Abstract
Foodstuff adulteration involves addition of any low-cost substances to the high-price 
materials to reduce the content of the expensive components, and hence decrease 
the production cost and reach to the maximum profit. An electronic nose was used 
in this study to detect the adulterations in mixed edible oils. The acidity, peroxide, 
anisidine, and Totox values of the edible oil samples were measured according to the 
official American Oil Chemist Society (AOCS) standard. The results were analyzed 
by Cluster analysis (CA), principle component analysis (PCA), principal component  
regression (PCR), linear discriminant analysis (LDA), and artificial neural network 
(ANN) methods with accuracy of 95, 98, 98, 88, and 97.3%, respectively. According 
to the results, the ANN method with structure of 8-7-5 showed the highest accuracy 
in classification of oil adulteration. Its correct classification ratio, mean square er-
rors, and correlation (r) were 97.3%, .117211, and .0963, respectively. The results 
also indicated that the proposed method can be used as an alternative of the official 
AOCS methods to innovatively detect the edible oil adulteration with high accuracy 
and speed.

Practical applications
Lipid oxidation is one of the major causes of food spoilage especially in those con-
taining oil. AOCS has developed various methods to evaluate the oxidation status of 
the oil assets. However, these chemical tests are time-consuming, destructive, and 
costly and require several glassware and reagents. E-nose could be used for real-time 
monitoring of the volatile components of the food to evaluate different features of 
the product. Generally, E-nose evaluates mixture of smells released form a sample 
and is a reliable, nondestructive, cost-effective, and portable method with high feasi-
bility and speed as well as simple use. CA, PCA, and ANN methods were also applied 
for qualitative differentiation of different adulteration percentages in oxidized and 
nonoxidized oils.
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criteria in food industry. Oxidation may occur from processing to 
storage of the edible oil. In addition to production of peroxides, al-
dehydes, ketones, acids, and other small molecules, it can decrease 
the quality of the food products. Oxidation degree can be influenced 
by storage condition. When the oil is exposed to light and high tem-
perature, its oxidation will be increased (Xu et al., 2016).

American oil chemists' society (AOCS) has developed various 
methods to evaluate the oxidation status of the oil, for example, to 
assess peroxide value (PV), acidity value (AV), Anisidine value (AnV), 
and Totox value. PV and AV have been widely employed in edible oil 
industry and food processing. These chemical tests are not difficult; 
however, they are time-consuming, destructive as mentioned earlier. 
These methods also impose potential risks on human and environ-
ment health due to their solvent wastes (Armenta, Garrigues, & de 
la Guardia, 2007).

Electronic nose includes a series of electrochemical sen-
sors, which can detect simple or complicated smells (Gardner & 
Bartlett, 1994). Digital outputs of the E-nose sensors should be ana-
lyzed to derive their useful information. Cluster analysis (CA), princi-
ple component analysis (PCA), linear discriminant analysis (LDA) and 
artificial neural network (ANN) are frequently used for this purpose 
(Majchrzak, Wojnowski, Dymerski, Gębicki, & Namieśnik,  2018). 
E-nose could be used for real time monitoring of the volatile compo-
nents of food to evaluate different features of the product. Generally, 
E-nose evaluates a mixture of smells released from a sample and is 
a reliable, nondestructive, cost-effective, and portable method with 
high feasibility and speed as well as simple use (Loutfi, Coradeschi, 
Mani, Shankar, & Rayappan, 2015; Tian, Wang, & Cui, 2013). Linear 
discriminant analysis, artificial neural networks, and support vector 
machines are among the methods most usually used in connection 
with E-noses (Majchrzak et al., 2018).

Application of the E-nose has drastically increased in the recent 
decade and has led to significant achievements in the food indus-
try. Among these researches, evaluation of the edible oil authentic-
ity to detect adulteration or spoilage can be mentioned (Aparicio, 
Rocha, Delgadillo, & Morales, 2000; Escuderos, García, Jiménez, & 
Horrillo, 2013; Gan, Tan, Man, NorAini, & Nazimah, 2005; Martın, 
Oliveros, Pavón, Pinto, & Cordero, 2001; Pacioni, Cerretani, Procida, 
& Cichelli, 2014). Moreover, E-nose was employed to detect oxida-
tion in soy oil (Yang et  al.,  2000), oxidation degree of ultra-virgin 
olive oil (Cosio, Ballabio, Benedetti, & Gigliotti, 2007; Lerma-Garcia, 
Simo-Alfonso, Bendini, & Cerretani, 2009), auto-oxidation of canola 
oil (Mildner-Szkudlarz, Jeleń, & Zawirska-Wojtasiak, 2008), magnolia 
biondii pamp (Nie et al., 2020), camellia oil authentication (Shi, Wu, 
Jin, & Wang, 2020), detection and discrimination of plant oil scents 
and their mixtures (Okur et  al.,  2020), and edible olive oil charac-
terization and shelf life assessment (Buratti, Malegori, Benedetti, 
Oliveri, & Giovanelli, 2018).

Zhu et al. used a new method in 2016 to qualitatively analyze the 
edible oil oxidation by E-nose. They employed an E-nose in combi-
nation with CA, PCA, and LDA methods to detect the oxidized and 
nonoxidized oils which resulted in accuracies of 95.8%, 98.9%, and 
100%, respectively (Xu et al., 2016).

According to the literature review, no study has used E-nose 
technique to detect adulteration in oxidized and nonoxidized edi-
ble oil. This study employed an E-nose to evaluate the possibility of 
adulteration in oxidized and nonoxidized oils, and different adulter-
ation percentages were prepared and assessed. The model perfor-
mance was assessed by official AOCS method. CA, PCA, and ANN 
methods were also applied for qualitative differentiation of different 
adulteration percentage in oxidized and nonoxidized oils.

2  | MATERIAL S AND METHODS

2.1 | Sample preparation

First, liquid mixed edible oils (sunflower, canola, and soy) with new 
production data and expiry dates were prepared from local market 
in Kermanshah. The samples were kept in a dry and dark place at 
room temperature (to minimize the physical and chemical changes) 
until the tests were conducted. Then, five oil samples were prepared 
using fresh and oxidized oils. The first sample included the fresh 
oil; while the second one contained 25% adulteration (75% fresh 
oil + and 25% oxidized oil). The third sample contained 50:50 fresh 
and oxidized oils. The fourth one included 75% oxidized oil, while 
the fifth one fully included the oxidized oil (100%). Then, 20 ml of 
each sample was transferred to a 50 ml glass container at ambient 
temperature (23 ± 2°C). The samples were equilibrated to the head-
space for 50 min in a capped vessel. On total, five types of oil with 
15 replicates for each sample were used.

2.2 | Electronic nose

In this study, the electronic nose fabricated in Razi University (Ayari, 
Mirzaee-Ghaleh, Rabbani, & Heidarbeigi, 2018b) was employed to 
detect adulteration in edible oil. The employed system included two 
sections: hardware and software. The hardware section encom-
passed data collection system, sensors, sensors chamber, sampling 
chamber, voltage supply, joints and accessories, electric valves, air 
pump, and filter. The applied E-nose is schematically illustrated in 
Figure 1. The sensor array used in this study was composed of eight 
metal oxide semiconductor (MOS) sensors whose features are listed 
in Table 1 (Ayari, Mirzaee-Ghaleh, Rabbani, & Heidarbeigi, 2018a).

Sampling process involved three stages: baseline correction, 
sample smell injection, measuring, and cleaning the sensor chamber 
with fresh air. Regarding the unique schedule of E-nose in each of 
these stages for each application, these stages will be re-scheduled 
by changing the application. In this study, the proper schedule was 
obtained after several tests and investigation of the response of the 
sensors. In the baseline correction stage, oxygen was passed over 
the sensors for 200 s until the array response reached to equilibrium. 
Upon injection of the sample smell to the sensors chamber, the out-
put voltage of each sensor will be changed depending on the sensor 
type and sensitivity. This stage often lasts for 150 s. In the last stage, 
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fresh air was again passed over the sensors for 200 s to return the 
sensor's response to the baseline and prepare the system for the 
subsequent test.

The sensor's responses were recorded and saved by a data col-
lection system connected to a computer (NI USB 6009) which used a 
graphic link programmed by LABVIEW 2013 software.

2.3 | Feature extraction

The first step in data analysis is the pre-processing of the obtained 
signals to extract the data from the sensors response, improve the 
quality of the created database and prepare the data for the pattern 
analysis and detection stage (Pearce, Schiffman, & Nagle,  2003). 
Various methods (i.e., discriminant, relative and fractional) have 
been developed for baseline correction, which can be employed 
depending on the type of applied sensors, sensor application and 
the researchers' preference (Arshak, Moore, Lyons, Harris, & 

Clifford, 2004). Here, the fractional method was employed to cor-
rect the baseline. This method can also be used for data normali-
zation and it has been widely employed for MOS sensors (Pearce 
et al., 2003):

In which Ys(t) is the normalized response, xs(o) denotes the base-
line and xs(t) represents the sensor response.

2.4 | Data analysis methods

To analyze the pre-processed data, CA, PCA, PCR, LDA, and ANN 
methods were applied. Cluster method is a classification method to 
allocate the similar entities and objects to the groups or clusters. 
Considering a series of objects and some of their similarity values, 
their ranking in the classification clusters or groups could be defined, 
CA is a technique aimed to divide the data to specific groups based 
on their similarity or distance (Huang, Guo, Qiu, & Chen, 2007). The 
results of a hierarchical clustering method are often represented as 
a dendrogram (Haddi et al., 2013). In this research, Ward's method 
(with the help of square Euclidian distance) was used to determine 
the membership cluster based on the nearest centroid ordering 
method.

Principle component analysis is a nonmonitored pattern detec-
tion method with a perpendicular linear transform, which transform 
the data to the new coordination system in such a way that the larg-
est variance will be placed on the first axis, the second largest one 
will be placed on the second axis and so on. In this way, the data 
of a series could be simply visualized. Analysis of the major com-
ponents could reduce the data dimension. In this way, the com-
ponents of the data set with the highest impact on the variance 
will be preserved. This method has been widely employed to rep-
resent the E-nose response to simple and complicated smells and 

(1)Ys(t)=
xs(t)−xs(o)

xs(o)

F I G U R E  1  Schematic of olfactory 
system used

TA B L E  1   The used sensors in electronic nose

Sensor type Main applications
Typical detection 
ranges (ppm)

MQ3 Alcohol 10–300

TGS822 Steam organic 
solvents

50–5,000

MQ-136 Sulfur dioxide (SO2) 1–200

MQ-9 CO and combustible 
gas

Co 10–1,000, Cg 
100–10,000

TGS813 CH4, C3H8, C4H10 500–10,000

MQ135 Steam ammonia, 
benzene, sulfide

10–10,000

TGS2602 Sulfide hydrogen 
sulfide, ammonia, 
toluene

1–30

TGS2620 Alcohol, steam 
organic solvents

50–5,000
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can provide some qualitative information for pattern detection 
(Ghasemi-Varnamkhasti, Mohtasebi, Siadat, Ahmadi, & Razavi, 2015; 
Ye et al., 2011). In principal components regression, we use PCA to 
decompose the independent (x) variables into an orthogonal basis 
and select a subset of those components as the variables to pre-
dict (y). The model performance can be evaluated by R2 and RMSE 
(Karami, Kaveh, Mirzaee-Ghaleh, & Taghinezhad,  2018; Kaveh, 
Karami, & Jahanbakhshi, 2020):

where, Sk, Tk, and Tm are measured, predicted, and average predicted.
Artificial neural network is a neural network, which encompasses 

three layers: input, output, and hidden layers. Each unit in the hidden 
layer and the output layer acts like a perceptron the only difference 
is the application of the threshold function instead of sigmoid func-
tion. The units in the input layer are only responsible for distribu-
tion of the input values to the subsequent layer; E= 1

N

∑N

i=1
��Sk−Tk

�� 
hence, they do not conduct any calculations (Haykin, 1999). In this 
study, the multi-layer Perceptron algorithm with back error-propaga-
tion was employed to classify the edible oils and detect adulteration. 
The hidden layer included several neurons, which indicate the non-
linearity of the network. An ANN with one hidden layer possessing 
the activation function of tangent hyperbolic was employed. The 
number of neurons in the hidden layer was determined by trial and 
error. Depending on the states (original and fake oils), the output 
layer indicates the prediction (desired) values. The performance of 
the designed networks was evaluated by mean square error (MSE) 
and correlation coefficient (r) (Kaveh, Chayjan, & Khezri, 2018). To 
train the network, the number of neurons in the hidden layer and 
MSE were changed. The data were divided into three groups training 
subset (60%), validation (20%), and test (20%).

Linear differentiation analysis (LDA) creates a linear combination 
of the features resulting in classification. This function increases the 
inter-group variance to intra-group variance ratio. Three methods 
including mahalanobis, quadratic, and linear are used for data clas-
sification by LDA approach. CA, PCA, PCR, and LDA methods were 
implemented by UnscramblerX10.4 to differ the authentic edible oil 
from the fake ones.

2.5 | Chemical analysis of the oils

Lipid oxidation is a dynamic equilibrium process in which the hydro-
peroxides are the key mediators in controlling the auto-oxidation 
progress. Hydro-peroxide can continue to produce the oxidation 
secondary products and degrade (Shahidi & Zhong, 2005). Chemical 
analysis includes measurement of different parameters, which will 
be discussed below. AV and PV measurements were conducted 

according to the official AOCS methods (American Oil Chemists' 
Society (AOCS), 2003). AV or the free fatty acid value (wFFA) indi-
cates the level of free fatty acid in the oil in the form of oleic acid 
(%); while PV indicates hydro-peroxide level (meq O2/kg) which can 
be formed through oxidation during the storage process. AnV can be 
used to assess the aldehyde content (especially unsaturated α and β 
aldehydes) (Semb, 2012). Totox index can be also calculated by the 
following equation (Shahidi & Wanasundara, 2002): 

According to AOCS standards, the oils with PV ≤ 10 meq/kg and 
AV ≤ 0.6 mg/g are defined as the nonoxidized oils, while those hav-
ing PV 10 meq/kg and AV > 0.6 mg/g are considered as the oxidized 
ones (Xu et al., 2016). Chemical analyses were conducted in three 
replicates for each sample. All the experiments were carried out in 
Mahidasht Kermanshah Vegetable Oil Agricultural Industrial. The 
statistical analyses were conducted using a completely randomized 
factorial test. Analysis of variance was performed in factorial exper-
iment in Randomized complete block design. Comparison of mean 
and main effects of interaction was performed by Duncan's multiple 
range test and MSTAT-C statistical software.

3  | RESULTS AND DISCUSSIONS

Voltage responses of the sensors were measured in 15 replicates for 
all the samples (fresh, oxidized oil, and those containing different lev-
els of adulteration (25%, 50% and 75%). Finally, the responses of the 
sensor arrays were recorded for 75 samples. Maximum response of 
each sample was extracted as the descriptor of the obtained signals. 
Then, a 75 × 8 feature matrix (obtained from the samples) was used as 
the input for the data analysis. The responses of the applied sensors 
to different levels of adulteration in the edible oil are represented in 
Figure 2. The difference in the output responses of the sensors in the 
measurement stage can be observed in the mentioned figure.

3.1 | CA method results

Hierarchical CA method was used to classify 75 edible oil samples 
based on the responses of the eight-sensor array using squared 
Euclidean as the similarity distance and Ward's clustering method 
as the amalgamation rule. Dendrogram of CA method is shown in 
Figure 3. As this figure suggests, the edible oil samples were divided 
into two cluster and five groups with distance of 4.3. The first clus-
ter included two groups of nonoxidized oils (fresh and 25% adul-
teration); while the three oxidized oils (50%–75% adulteration and 
oxidized sample) were placed in the second cluster. Therefore, CA 
method could offer an initial classification; although the group divi-
sions were different in the different distances. Xu et al. (2016) classi-
fied the oxidized and nonoxidized oils with the inter-group distance 
of 5.01.

(2)R
2
=1−

∑N

i=1
(Sk−Tk)

2

∑N

i=1
(Sk−Tm)

2

(3)RMSE=
1

N

N∑

i=1

|
|Sk−Tk

|
|

(5)Totox=2× (PV)+AnV
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3.2 | PCA method results

To detect adulteration in the edible oil samples, PCA method was 
also applied. Score diagram of the two major components is rep-
resented in Figure 4. This diagram is generally used to classify the 
separate data clusters to identify their pattern (Pearce et al., 2003). 
The first two major components described 98% variance of the data 
set (PC1 = 94% and PC2 = 4%) for differentiating the different levels 
of adulteration. According to the score diagram, the samples with 
different levels of adulteration were relatively different although 
75% and oxidized oil sample somewhat overlapped with each other.

The role of each sensor in differentiating the samples can be stud-
ied by Loading diagram (Ghasemi-Varnamkhasti et al., 2015). For this 

purpose, the sensors were visualized in the loading diagram with their 
specific coefficients (Figure 5). Higher loading of a sensor on a major 
component (more proximity to the outer circle) reflects its higher role 
in detection and differentiation of the samples. According to the load-
ing results, the sensors with the lowest impact of the detection and 
differentiation can be eliminated. This can reduce the complexity of 
the data analysis and also decline the construction cost of the sensor 
array (Ghasemi-Varnamkhasti et al., 2015). The loading diagram of the 
two major components is depicted in Figure 5. Accordingly, TGS2602 
and MQ136 had the highest loading coefficients and hence played 
the most significant roles in the samples differentiations. Despite their 
high loading coefficients, as these coefficients were close to each 
other, it can be concluded that the two sensors had similar impacts on 

F I G U R E  2  The responses of the electronic nose system to Different levels of adulteration on edible oils: (a) Fresh oil, (b) 25% adulterated, 
(c) 50% adulterated, (d) 75% adulterated, (e) Oxidized
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pattern identification. Hence, for the sake of simplicity, one of them 
can be used, as the figure suggests, MQ9 sensor had the lowest load-
ing coefficient and exhibited the lowest differentiation capacity.

As the radar diagram of Figure 6 shows, oxidized oil and the one 
with 25% adulteration had the highest and lowest impact on the 
sensors, respectively. The highest response of the sensors was for 

TGS2602 related to smell of hydrogen sulfide, ammonia, and toluene 
as well as MQ136 related to sulfur dioxide (SO2). MQ9, TGS822, and 
TGS813 had no role in the oils differentiation. Given the urge for re-
ducing the fabrication cost of E-nose, these sensors can be eliminated. 
Ayari et al. (2018b) also reported similar results regarding the adulter-
ation detection in animal oil and edible oil (Ayari et al., 2018a, 2018b).

F I G U R E  3  CA dendrogram responds to Pure and adulterated oil samples

F I G U R E  4  Score plot PCA analysis for different levels of adulteration

F I G U R E  5  Loading plot for PCA analysis for different levels of adulteration
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3.3 | PCR method results

Prediction performance of PCR was estimated using the parameters 
obtained from the fitted equation; R2 and RMSE between experi-
mental and predicted values. Generally, the larger the R2 and the 
lower the RMSE are, the better the prediction model is (Hong & 
Wang, 2014). Prediction and calibration results by PCR for TGS2602 
and MQ136 sensor are shown in Table  2 and Figure  7. Hong and 
Wang (2014) in the detection of adulteration in cherry tomato juices 
based on electronic nose and tongue, obtained similar results.

3.4 | LDA method results

Linear discriminant analysis diagram of the E-nose signals for detec-
tion of oil adulteration is shown in Figure 8 according to LDA-1 and 
LDA-2 components. The results indicated the accuracy of 85%.

As it can be seen, the fresh oil was well differentiated with three 
levels of adulterated and oxidized oil. Disturbance diagram and per-
formance parameters of LDA method are listed in Tables  3 and 4. 
Table 4 gives the performance parameters of the classifier according 
to the aforementioned confusion matrix including precision, accu-
racy, specificity, sensitivity, and area under the curve for (1) fresh oil, 
(2) 25%, (3) 50%, (4) 75%, and (5) oxidized adulteration. The average 
per class for precision, accuracy, specificity, sensitivity, and area under 
the curve were 95.2, 89.7, 88, 97, and 92.5, respectively. Regarding 

the obtained results, the classification accuracy of fresh oil and 25% 
adulteration was 100%. Comparing this method with official AOCS 
method, it can be said that the chemical tests failed to detect adul-
teration at the level of 25%; E-nose, however, managed to detect this 
level of adulteration with accuracy of 100%. Addition of another food 
product to a substance (even in small amounts) will change its smell 
pattern. Given the high sensitivity of the sensors and their high dif-
ferentiation ability, these sensors can detect the difference between 
the volatile substances passing on their surfaces (Bhattacharyya & 
Bandhopadhyay, 2010). Xu et al. (2016) applied LDA method and suc-
ceeded to classify the fresh and spoiled oils with precision of 100%. 
Nouri, Mohtasebi, and Jahanbakhshi (2019), to classify different per-
centages of cocoa in chocolate, they obtained a 100% detection ac-
curacy. In addition, in another study, they found 100% accuracy in 
detecting the quality of pomegranate fruit infected with fungal disease 
(Nouri, Mohtasebi, & Rafiee, 2020). Mahmodi, Mostafaei, and Mirzaee-
Ghaleh (2019), obtained 87.1% accuracy for classifying different fuels.

3.5 | ANN results

Perceptron neural network was employed to classify the five types 
of the fresh and spoiled oils as well as those containing 25%, 50%, 
and 75% adulteration. For this purpose, considering the number of 
available sensors, eight neurons were allocated to the input layer 
while five ones were considered for the output layer depending on 
the adulteration level. To train the network, the variation of the num-
ber of neurons in the hidden layer and the MSE were determined 
by trial and error. By training the network with different number of 
neurons in the hidden layer, an optimal network with seven neurons 
in the hidden layer was created. Therefore, the best ANN had the 
structure of 8-7-5, which showed the highest accuracy in classifica-
tion of the adulteration in the oil. CCR, MSE, and R-values of the best 
structure were 97.3%, .0027003, and .0984, respectively (Table 5). 
These results were considerably higher than the results obtained by 

F I G U R E  6   Radar graph response of 
the sensors

TA B L E  2  Comparison of prediction and calibration results of 
PCR based on different data sets

Sensor

Calibration Prediction

R2 RMSE R2 RMSE

Oil sample MQ136 .99 .2749 .99 .2855

TGS2602 .999 .0059 .999 .0058
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F I G U R E  8  LDA results for different levels of adulteration

Samples
Fresh 
oil

25% 
Adulterated

50% 
Adulterated

75% 
Adulterated Oxidized

LDA

Fresh oil 15 0 0 0 0

25% Adulterated 0 15 0 0 0

50% Adulterated 0 0 13 1 0

75% Adulterated 0 0 2 13 5

Oxidized 0 0 0 1 10

Correct 
classification rate

88%

ANN

Fresh oil 15 0 1 0 0

25% Adulterated 0 15 0 0 0

50% Adulterated 0 0 13 0 0

75% Adulterated 0 0 1 15 0

Oxidized 0 0 0 0 15

Correct 
classification rate

97.3%

TA B L E  3  Confusion matrix obtained to 
identify edible oil fresh from adulteration 
LDA and ANN classifier

F I G U R E  7  PCR results for different levels of adulteration (a) MQ136, (b) TGS2602
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Ayari et al.  (2018a) for detecting adulteration between the animal 
and edible oil. To evaluate the oxidation of Chinese-style sausage fat 
with determination coefficients (R2s), more than .914 and .814 were 
obtained during processing and storage (Gu, Sun, Tu, & Pan, 2017). 
Similar results have been reported by other researchers (Gonzalez 
Viejo, Fuentes, Godbole, Widdicombe, & Unnithan, 2020).

Confusion matrix of this network is also presented in Table 3; 
while Table 4 lists the classification efficiency parameters according 
to the confusion matrix. The mean classification accuracy of each 
class was obtained as 97.3%. Table 4 gives the performance param-
eters of the classifier according to the aforementioned confusion 
matrix including precision, accuracy, specificity, sensitivity, and area 
under the curve for (1) fresh oil, (2) 25%, (3) 50%, (4) 75%, and (5) 
oxidized adulteration. The average per class for precision, accuracy, 
specificity, sensitivity, and area under the curve were 99.3, 98.3, 
97.5, 97.3, and 98.9, respectively.

3.6 | Chemical analysis of the oil

The major components of the oil samples were analyzed according 
to official AOCS methods after E-nose analysis and the mean values 
are listed in Table 6.

Free fatty acids are the consequence of enzymic hydrolysis of 
triglycerides in which heat and humidity play the role of catalysts. 
These compounds contribute in auto-oxidation and give rise to 
products, which are the main cause of unpleasant taste and smell in 
the oil products (Brain & Yada, 2009). Peroxide index is a criterion 
to measure the hydro-peroxides. Hydro-peroxides are the primary 
product of the oxidation in oils and fats, which can be degraded 
to volatile and nonvolatile secondary products. Peroxide index 
can be a proper indicator of initial stages of oxidation (Shahidi & 
Zhong, 2005). Anisidine index indicates the secondary products of 
oxidation produced as the result of peroxides destruction (Bonilla, 
Atares, Vargas, & Chiralt,  2012). According to the strict standard 
regulation in Iran, the oils with acidity index above 0.6 and peroxide 
levels more than 5 are considered as the spoiled oil (Karami, Rasekh, 
& Mirzaee-Ghaleh, 2020).

Variance analysis on the impact of samples on the acidity, perox-
ide, anisidine, and Totox is summarized in Table 6. It can be seen that 
the effect of each components became significant at the probability 
level of 1%. The mean comparison of 5 testing methods were com-
pared by multi-range Duncan mean comparison test at probability 

Class Accuracy Precision Sensitivity Specificity AUC

LDA

Fresh oil 1 1 1 1 1

25% Adulterated 1 1 1 1 1

50% Adulterated 0.96 0.928571 0.866667 0.983333 0.925

75% Adulterated 0.88 0.65 0.866667 0.883333 0.875

Oxidized 0.92 0.909091 0.666667 0.983333 0.825

Average per class 0.952 0.897532 0.88 0.97 0.925

ANN

Fresh oil 0.986667 0.9375 1 0.983333 0.991667

25% Adulterated 1 1 1 1 1

50% Adulterated 0.973333 1 0.866667 1 0.933333

75% Adulterated 0.986667 0.9375 1 0.983333 0.991667

Oxidized 1 1 1 1 1

Average per class 0.989333 0.975 0.973333 0.993333 0.983333

TA B L E  4   Performance parameters for 
LDA and ANN classifier

TA B L E  5  Artificial neural network results for identify edible oil 
fresh from adulteration

Row Structure MSE r CCR

1 8-5-5 0.0205622 .0925 94.5

2 8-6-5 0.0195811 .0936 96.5

3 8-7-5 0.0027003 .0984 97.3

4 8-8-5 0.0186101 .0945 96.2

5 8-9-5 0.0162072 .9485 96.5

Abbreviations: CCR, correct classification rate; MSE, mean square error; 
r, correlation coefficient.

TA B L E  6  Analysis of variance for the chemical parameters of 
edible oil

Sources
Mean 
square

p-Anisidine value Treatments 6.691**

Error 0.005

Peroxide value Treatments 30.61**

Error 0.005

Acetic acid value Treatments 0.00002**

Error 0.0001

Totox value Treatments 72.458**

Error 0.033

**Significant at p ≤ .01. 
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level of 1% as listed in Table 7. Totox index is a criterion of total oxi-
dation including initial and secondary products of oxidation (Shahidi 
& Zhong, 2005). The results of this index were similar to those of 
peroxide. As peroxide index is not a reliable index for the oils oxi-
dation and it can be broken during the heat procedures, Totox index 
was used to calculate the oil oxidation (Billek, 1978).

According to Table 7, as expected, spoiled oils had higher Totox 
index compared to the fresh samples. The most important point was, 
however, the fact that the fresh and 25% adulterated samples were 
considered as the healthy oils and those with 50%, 75%, and 100% 
adulteration were determined as the spoiled or oxidized samples. 
This means that the chemical tests could not detect adulteration in 
the sample containing 25% oxidized oil. Therefore, it is possible that 
the producers mix their fresh oils with oxidized one at the mentioned 
level to reach to higher profit. This could be highly dangerous for 
human health.

4  | CONCLUSIONS

In this study, a portable eight-sensor E-nose was employed to inves-
tigate the oxidation degree of the edible oils. These results indicated 
that application of E-nose in combination with CA, PCA, PCR, LDA, 
and ANN methods could be a promising approach in successful de-
tection of adulteration in the edible oils.

Eight sensors of the electronic nose exhibited different response 
signals to the oxidized oils which were different from the nonox-
idized one. Based on the findings of this study, it is suggested to 
use E-nose along with CA, PCA, PCR, LDA, and ANN methods to 
determine adulteration in the oil. The results of this research were 
mainly in line with the results of the official AOCS method except 
for the sample with 25% adulteration. Therefore, the E-nose, which 
is similar to the human olfaction system, requires no specific design 
to detect the volatile compounds. This technique is superior over 
the conventional official method for detection of oxidation degree in 
the edible oils as it is a nondestructive and timesaving method which 
reduced the use of toxic organic solvents. The results of this study 
showed that application of the proposed E-nose could decrease the 
dependence to the olfaction evaluator individuals or time-consum-
ing data analysis to differentiate the oxidized oils from the nonoxi-
dized ones.
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