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1  | INTRODUC TION

Regarding high rate of adulteration in food products, development 
of fast analytical methods to detect adulteration and verify the 
food product authenticity is of crucial importance (Peris & Escuder-
Gilabert, 2016). The consumers' preference for use of a specific type 

of edible oil may be attributed to its aroma, taste, and nutritional val-
ues. Regarding the serious health-threatening concerns, validation 
of the edible oil is one of the major issues in food product analysis 
(Xu, Yu, Liu, & Zhang, 2016).

Lipid oxidation is one of the major causes of food spoilage espe-
cially in those containing oil (Yang, Han, & Noh, 2000). Therefore, this 
parameter has been considered as one of the important qualitative 
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Abstract
Foodstuff adulteration involves addition of any low-cost substances to the high-price 
materials to reduce the content of the expensive components, and hence decrease 
the	production	cost	and	reach	to	the	maximum	profit.	An	electronic	nose	was	used	
in this study to detect the adulterations in mixed edible oils. The acidity, peroxide, 
anisidine, and Totox values of the edible oil samples were measured according to the 
official	American	Oil	Chemist	Society	 (AOCS)	standard.	The	results	were	analyzed	
by	Cluster	 analysis	 (CA),	 principle	 component	 analysis	 (PCA),	 principal	 component	  
regression	 (PCR),	 linear	 discriminant	 analysis	 (LDA),	 and	 artificial	 neural	 network	
(ANN)	methods	with	accuracy	of	95,	98,	98,	88,	and	97.3%,	respectively.	According	
to	the	results,	the	ANN	method	with	structure	of	8-7-5	showed	the	highest	accuracy	
in classification of oil adulteration. Its correct classification ratio, mean square er-
rors, and correlation (r)	were	97.3%,	 .117211,	 and	 .0963,	 respectively.	 The	 results	
also indicated that the proposed method can be used as an alternative of the official 
AOCS	methods	to	innovatively	detect	the	edible	oil	adulteration	with	high	accuracy	
and speed.

Practical applications
Lipid oxidation is one of the major causes of food spoilage especially in those con-
taining	oil.	AOCS	has	developed	various	methods	to	evaluate	the	oxidation	status	of	
the oil assets. However, these chemical tests are time-consuming, destructive, and 
costly and require several glassware and reagents. E-nose could be used for real-time 
monitoring of the volatile components of the food to evaluate different features of 
the product. Generally, E-nose evaluates mixture of smells released form a sample 
and is a reliable, nondestructive, cost-effective, and portable method with high feasi-
bility	and	speed	as	well	as	simple	use.	CA,	PCA,	and	ANN	methods	were	also	applied	
for qualitative differentiation of different adulteration percentages in oxidized and 
nonoxidized oils.
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criteria in food industry. Oxidation may occur from processing to 
storage of the edible oil. In addition to production of peroxides, al-
dehydes, ketones, acids, and other small molecules, it can decrease 
the quality of the food products. Oxidation degree can be influenced 
by storage condition. When the oil is exposed to light and high tem-
perature, its oxidation will be increased (Xu et al., 2016).

American	 oil	 chemists'	 society	 (AOCS)	 has	 developed	 various	
methods to evaluate the oxidation status of the oil, for example, to 
assess	peroxide	value	(PV),	acidity	value	(AV),	Anisidine	value	(AnV),	
and	Totox	value.	PV	and	AV	have	been	widely	employed	in	edible	oil	
industry and food processing. These chemical tests are not difficult; 
however, they are time-consuming, destructive as mentioned earlier. 
These methods also impose potential risks on human and environ-
ment	health	due	to	their	solvent	wastes	(Armenta,	Garrigues,	&	de	
la	Guardia,	2007).

Electronic nose includes a series of electrochemical sen-
sors, which can detect simple or complicated smells (Gardner & 
Bartlett, 1994). Digital outputs of the E-nose sensors should be ana-
lyzed	to	derive	their	useful	information.	Cluster	analysis	(CA),	princi-
ple	component	analysis	(PCA),	linear	discriminant	analysis	(LDA)	and	
artificial	neural	network	(ANN)	are	frequently	used	for	this	purpose	
(Majchrzak,	 Wojnowski,	 Dymerski,	 Gębicki,	 &	 Namieśnik,	 2018).	
E-nose could be used for real time monitoring of the volatile compo-
nents of food to evaluate different features of the product. Generally, 
E-nose evaluates a mixture of smells released from a sample and is 
a reliable, nondestructive, cost-effective, and portable method with 
high	feasibility	and	speed	as	well	as	simple	use	(Loutfi,	Coradeschi,	
Mani,	Shankar,	&	Rayappan,	2015;	Tian,	Wang,	&	Cui,	2013).	Linear	
discriminant analysis, artificial neural networks, and support vector 
machines are among the methods most usually used in connection 
with	E-noses	(Majchrzak	et	al.,	2018).

Application	of	the	E-nose	has	drastically	increased	in	the	recent	
decade and has led to significant achievements in the food indus-
try.	Among	these	researches,	evaluation	of	the	edible	oil	authentic-
ity	 to	detect	 adulteration	or	 spoilage	 can	be	mentioned	 (Aparicio,	
Rocha,	Delgadillo,	&	Morales,	2000;	Escuderos,	García,	Jiménez,	&	
Horrillo,	2013;	Gan,	Tan,	Man,	NorAini,	&	Nazimah,	2005;	Martın,	
Oliveros,	Pavón,	Pinto,	&	Cordero,	2001;	Pacioni,	Cerretani,	Procida,	
&	Cichelli,	2014).	Moreover,	E-nose	was	employed	to	detect	oxida-
tion in soy oil (Yang et al., 2000), oxidation degree of ultra-virgin 
olive	oil	(Cosio,	Ballabio,	Benedetti,	&	Gigliotti,	2007;	Lerma-Garcia,	
Simo-Alfonso,	Bendini,	&	Cerretani,	2009),	auto-oxidation	of	canola	
oil	(Mildner-Szkudlarz,	Jeleń,	&	Zawirska-Wojtasiak,	2008),	magnolia	
biondii	pamp	(Nie	et	al.,	2020),	camellia	oil	authentication	(Shi,	Wu,	
Jin,	&	Wang,	2020),	detection	and	discrimination	of	plant	oil	scents	
and their mixtures (Okur et al., 2020), and edible olive oil charac-
terization and shelf life assessment (Buratti, Malegori, Benedetti, 
Oliveri,	&	Giovanelli,	2018).

Zhu et al. used a new method in 2016 to qualitatively analyze the 
edible oil oxidation by E-nose. They employed an E-nose in combi-
nation	with	CA,	PCA,	and	LDA	methods	to	detect	the	oxidized	and	
nonoxidized	oils	which	resulted	in	accuracies	of	95.8%,	98.9%,	and	
100%,	respectively	(Xu	et	al.,	2016).

According	 to	 the	 literature	 review,	 no	 study	 has	 used	 E-nose	
technique to detect adulteration in oxidized and nonoxidized edi-
ble oil. This study employed an E-nose to evaluate the possibility of 
adulteration in oxidized and nonoxidized oils, and different adulter-
ation percentages were prepared and assessed. The model perfor-
mance	was	assessed	by	official	AOCS	method.	CA,	PCA,	and	ANN	
methods were also applied for qualitative differentiation of different 
adulteration percentage in oxidized and nonoxidized oils.

2  | MATERIAL S AND METHODS

2.1 | Sample preparation

First, liquid mixed edible oils (sunflower, canola, and soy) with new 
production data and expiry dates were prepared from local market 
in Kermanshah. The samples were kept in a dry and dark place at 
room temperature (to minimize the physical and chemical changes) 
until the tests were conducted. Then, five oil samples were prepared 
using fresh and oxidized oils. The first sample included the fresh 
oil;	 while	 the	 second	 one	 contained	 25%	 adulteration	 (75%	 fresh	
oil	+	and	25%	oxidized	oil).	The	third	sample	contained	50:50	fresh	
and	oxidized	oils.	The	 fourth	one	 included	75%	oxidized	oil,	while	
the	fifth	one	fully	 included	the	oxidized	oil	 (100%).	Then,	20	ml	of	
each	sample	was	transferred	to	a	50	ml	glass	container	at	ambient	
temperature	(23	±	2°C).	The	samples	were	equilibrated	to	the	head-
space	for	50	min	in	a	capped	vessel.	On	total,	five	types	of	oil	with	
15	replicates	for	each	sample	were	used.

2.2 | Electronic nose

In	this	study,	the	electronic	nose	fabricated	in	Razi	University	(Ayari,	
Mirzaee-Ghaleh,	Rabbani,	&	Heidarbeigi,	2018b)	was	employed	 to	
detect adulteration in edible oil. The employed system included two 
sections: hardware and software. The hardware section encom-
passed data collection system, sensors, sensors chamber, sampling 
chamber, voltage supply, joints and accessories, electric valves, air 
pump, and filter. The applied E-nose is schematically illustrated in 
Figure 1. The sensor array used in this study was composed of eight 
metal	oxide	semiconductor	(MOS)	sensors	whose	features	are	listed	
in	Table	1	(Ayari,	Mirzaee-Ghaleh,	Rabbani,	&	Heidarbeigi,	2018a).

Sampling	 process	 involved	 three	 stages:	 baseline	 correction,	
sample smell injection, measuring, and cleaning the sensor chamber 
with fresh air. Regarding the unique schedule of E-nose in each of 
these stages for each application, these stages will be re-scheduled 
by changing the application. In this study, the proper schedule was 
obtained after several tests and investigation of the response of the 
sensors. In the baseline correction stage, oxygen was passed over 
the sensors for 200 s until the array response reached to equilibrium. 
Upon injection of the sample smell to the sensors chamber, the out-
put voltage of each sensor will be changed depending on the sensor 
type	and	sensitivity.	This	stage	often	lasts	for	150	s.	In	the	last	stage,	
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fresh air was again passed over the sensors for 200 s to return the 
sensor's response to the baseline and prepare the system for the 
subsequent test.

The sensor's responses were recorded and saved by a data col-
lection	system	connected	to	a	computer	(NI	USB	6009)	which	used	a	
graphic	link	programmed	by	LABVIEW	2013	software.

2.3 | Feature extraction

The first step in data analysis is the pre-processing of the obtained 
signals to extract the data from the sensors response, improve the 
quality of the created database and prepare the data for the pattern 
analysis	 and	 detection	 stage	 (Pearce,	 Schiffman,	 &	 Nagle,	 2003).	
Various methods (i.e., discriminant, relative and fractional) have 
been developed for baseline correction, which can be employed 
depending on the type of applied sensors, sensor application and 
the	 researchers'	 preference	 (Arshak,	 Moore,	 Lyons,	 Harris,	 &	

Clifford,	2004).	Here,	 the	fractional	method	was	employed	to	cor-
rect the baseline. This method can also be used for data normali-
zation	 and	 it	 has	 been	widely	 employed	 for	MOS	 sensors	 (Pearce	
et al., 2003):

In which Ys(t) is the normalized response, xs(o) denotes the base-
line and xs(t) represents the sensor response.

2.4 | Data analysis methods

To	analyze	the	pre-processed	data,	CA,	PCA,	PCR,	LDA,	and	ANN	
methods	were	applied.	Cluster	method	is	a	classification	method	to	
allocate the similar entities and objects to the groups or clusters. 
Considering	a	series	of	objects	and	some	of	their	similarity	values,	
their ranking in the classification clusters or groups could be defined, 
CA	is	a	technique	aimed	to	divide	the	data	to	specific	groups	based	
on	their	similarity	or	distance	(Huang,	Guo,	Qiu,	&	Chen,	2007).	The	
results of a hierarchical clustering method are often represented as 
a dendrogram (Haddi et al., 2013). In this research, Ward's method 
(with the help of square Euclidian distance) was used to determine 
the membership cluster based on the nearest centroid ordering 
method.

Principle component analysis is a nonmonitored pattern detec-
tion method with a perpendicular linear transform, which transform 
the data to the new coordination system in such a way that the larg-
est variance will be placed on the first axis, the second largest one 
will be placed on the second axis and so on. In this way, the data 
of	 a	 series	 could	 be	 simply	 visualized.	Analysis	 of	 the	major	 com-
ponents could reduce the data dimension. In this way, the com-
ponents of the data set with the highest impact on the variance 
will be preserved. This method has been widely employed to rep-
resent the E-nose response to simple and complicated smells and 

(1)Ys(t)=
xs(t)−xs(o)

xs(o)

F I G U R E  1  Schematic	of	olfactory	
system used

TA B L E  1   The used sensors in electronic nose

Sensor type Main applications
Typical detection 
ranges (ppm)

MQ3 Alcohol 10–300

TGS822 Steam	organic	
solvents

50–5,000

MQ-136 Sulfur	dioxide	(SO2) 1–200

MQ-9 CO	and	combustible	
gas

Co	10–1,000,	Cg	
100–10,000

TGS813 CH4,	C3H8,	C4H10 500–10,000

MQ135 Steam	ammonia,	
benzene, sulfide

10–10,000

TGS2602 Sulfide	hydrogen	
sulfide, ammonia, 
toluene

1–30

TGS2620 Alcohol,	steam	
organic solvents

50–5,000
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can provide some qualitative information for pattern detection 
(Ghasemi-Varnamkhasti,	Mohtasebi,	Siadat,	Ahmadi,	&	Razavi,	2015;	
Ye	et	al.,	2011).	In	principal	components	regression,	we	use	PCA	to	
decompose the independent (x) variables into an orthogonal basis 
and select a subset of those components as the variables to pre-
dict (y). The model performance can be evaluated by R2 and RMSE 
(Karami,	 Kaveh,	 Mirzaee-Ghaleh,	 &	 Taghinezhad,	 2018;	 Kaveh,	
Karami,	&	Jahanbakhshi,	2020):

where, Sk, Tk, and Tm are measured, predicted, and average predicted.
Artificial	neural	network	is	a	neural	network,	which	encompasses	

three layers: input, output, and hidden layers. Each unit in the hidden 
layer and the output layer acts like a perceptron the only difference 
is the application of the threshold function instead of sigmoid func-
tion. The units in the input layer are only responsible for distribu-
tion of the input values to the subsequent layer; E= 1

N

∑N

i=1
��Sk−Tk

�� 
hence, they do not conduct any calculations (Haykin, 1999). In this 
study, the multi-layer Perceptron algorithm with back error-propaga-
tion was employed to classify the edible oils and detect adulteration. 
The hidden layer included several neurons, which indicate the non-
linearity	of	the	network.	An	ANN	with	one	hidden	layer	possessing	
the activation function of tangent hyperbolic was employed. The 
number of neurons in the hidden layer was determined by trial and 
error. Depending on the states (original and fake oils), the output 
layer indicates the prediction (desired) values. The performance of 
the	designed	networks	was	evaluated	by	mean	square	error	(MSE)	
and correlation coefficient (r)	 (Kaveh,	Chayjan,	&	Khezri,	2018).	To	
train the network, the number of neurons in the hidden layer and 
MSE	were	changed.	The	data	were	divided	into	three	groups	training	
subset	(60%),	validation	(20%),	and	test	(20%).

Linear	differentiation	analysis	(LDA)	creates	a	linear	combination	
of the features resulting in classification. This function increases the 
inter-group variance to intra-group variance ratio. Three methods 
including mahalanobis, quadratic, and linear are used for data clas-
sification	by	LDA	approach.	CA,	PCA,	PCR,	and	LDA	methods	were	
implemented by UnscramblerX10.4 to differ the authentic edible oil 
from the fake ones.

2.5 | Chemical analysis of the oils

Lipid oxidation is a dynamic equilibrium process in which the hydro-
peroxides are the key mediators in controlling the auto-oxidation 
progress. Hydro-peroxide can continue to produce the oxidation 
secondary	products	and	degrade	(Shahidi	&	Zhong,	2005).	Chemical	
analysis includes measurement of different parameters, which will 
be	 discussed	 below.	 AV	 and	 PV	 measurements	 were	 conducted	

according	 to	 the	 official	 AOCS	 methods	 (American	 Oil	 Chemists'	
Society	 (AOCS),	2003).	AV	or	 the	 free	 fatty	acid	value	 (wFFA) indi-
cates the level of free fatty acid in the oil in the form of oleic acid 
(%);	while	PV	indicates	hydro-peroxide	level	(meq	O2/kg) which can 
be	formed	through	oxidation	during	the	storage	process.	AnV	can	be	
used to assess the aldehyde content (especially unsaturated α and β 
aldehydes)	(Semb,	2012).	Totox	index	can	be	also	calculated	by	the	
following	equation	(Shahidi	&	Wanasundara,	2002):	

According	to	AOCS	standards,	the	oils	with	PV	≤	10	meq/kg	and	
AV	≤	0.6	mg/g	are	defined	as	the	nonoxidized	oils,	while	those	hav-
ing	PV	10	meq/kg	and	AV	>	0.6	mg/g	are	considered	as	the	oxidized	
ones	 (Xu	et	al.,	2016).	Chemical	analyses	were	conducted	 in	 three	
replicates	for	each	sample.	All	the	experiments	were	carried	out	in	
Mahidasht	 Kermanshah	 Vegetable	 Oil	 Agricultural	 Industrial.	 The	
statistical analyses were conducted using a completely randomized 
factorial	test.	Analysis	of	variance	was	performed	in	factorial	exper-
iment	 in	Randomized	complete	block	design.	Comparison	of	mean	
and main effects of interaction was performed by Duncan's multiple 
range	test	and	MSTAT-C	statistical	software.

3  | RESULTS AND DISCUSSIONS

Voltage	responses	of	the	sensors	were	measured	in	15	replicates	for	
all the samples (fresh, oxidized oil, and those containing different lev-
els	of	adulteration	(25%,	50%	and	75%).	Finally,	the	responses	of	the	
sensor	arrays	were	recorded	for	75	samples.	Maximum	response	of	
each sample was extracted as the descriptor of the obtained signals. 
Then,	a	75	×	8	feature	matrix	(obtained	from	the	samples)	was	used	as	
the input for the data analysis. The responses of the applied sensors 
to different levels of adulteration in the edible oil are represented in 
Figure 2. The difference in the output responses of the sensors in the 
measurement stage can be observed in the mentioned figure.

3.1 | CA method results

Hierarchical	CA	method	was	used	to	classify	75	edible	oil	samples	
based on the responses of the eight-sensor array using squared 
Euclidean as the similarity distance and Ward's clustering method 
as	 the	amalgamation	 rule.	Dendrogram	of	CA	method	 is	 shown	 in	
Figure	3.	As	this	figure	suggests,	the	edible	oil	samples	were	divided	
into two cluster and five groups with distance of 4.3. The first clus-
ter	 included	 two	 groups	 of	 nonoxidized	 oils	 (fresh	 and	 25%	 adul-
teration);	while	 the	 three	oxidized	oils	 (50%–75%	adulteration	and	
oxidized	sample)	were	placed	 in	 the	second	cluster.	Therefore,	CA	
method could offer an initial classification; although the group divi-
sions were different in the different distances. Xu et al. (2016) classi-
fied the oxidized and nonoxidized oils with the inter-group distance 
of	5.01.

(2)R
2
=1−

∑N

i=1
(Sk−Tk)

2

∑N

i=1
(Sk−Tm)

2

(3)RMSE=
1

N

N∑

i=1

|
|Sk−Tk

|
|

(5)Totox=2× (PV)+AnV
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3.2 | PCA method results

To	detect	adulteration	 in	 the	edible	oil	 samples,	PCA	method	was	
also	 applied.	 Score	 diagram	 of	 the	 two	major	 components	 is	 rep-
resented in Figure 4. This diagram is generally used to classify the 
separate data clusters to identify their pattern (Pearce et al., 2003). 
The	first	two	major	components	described	98%	variance	of	the	data	
set	(PC1	=	94%	and	PC2	=	4%)	for	differentiating	the	different	levels	
of	 adulteration.	According	 to	 the	 score	diagram,	 the	 samples	with	
different levels of adulteration were relatively different although 
75%	and	oxidized	oil	sample	somewhat	overlapped	with	each	other.

The role of each sensor in differentiating the samples can be stud-
ied	by	Loading	diagram	(Ghasemi-Varnamkhasti	et	al.,	2015).	For	this	

purpose, the sensors were visualized in the loading diagram with their 
specific	coefficients	(Figure	5).	Higher	loading	of	a	sensor	on	a	major	
component (more proximity to the outer circle) reflects its higher role 
in	detection	and	differentiation	of	the	samples.	According	to	the	load-
ing results, the sensors with the lowest impact of the detection and 
differentiation can be eliminated. This can reduce the complexity of 
the data analysis and also decline the construction cost of the sensor 
array	(Ghasemi-Varnamkhasti	et	al.,	2015).	The	loading	diagram	of	the	
two	major	components	is	depicted	in	Figure	5.	Accordingly,	TGS2602	
and MQ136 had the highest loading coefficients and hence played 
the most significant roles in the samples differentiations. Despite their 
high loading coefficients, as these coefficients were close to each 
other, it can be concluded that the two sensors had similar impacts on 

F I G U R E  2  The	responses	of	the	electronic	nose	system	to	Different	levels	of	adulteration	on	edible	oils:	(a)	Fresh	oil,	(b)	25%	adulterated,	
(c)	50%	adulterated,	(d)	75%	adulterated,	(e)	Oxidized
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pattern identification. Hence, for the sake of simplicity, one of them 
can be used, as the figure suggests, MQ9 sensor had the lowest load-
ing coefficient and exhibited the lowest differentiation capacity.

As	the	radar	diagram	of	Figure	6	shows,	oxidized	oil	and	the	one	
with	 25%	 adulteration	 had	 the	 highest	 and	 lowest	 impact	 on	 the	
sensors, respectively. The highest response of the sensors was for 

TGS2602	related	to	smell	of	hydrogen	sulfide,	ammonia,	and	toluene	
as	well	as	MQ136	related	to	sulfur	dioxide	(SO2).	MQ9,	TGS822,	and	
TGS813	had	no	role	 in	the	oils	differentiation.	Given	the	urge	for	re-
ducing the fabrication cost of E-nose, these sensors can be eliminated. 
Ayari	et	al.	(2018b)	also	reported	similar	results	regarding	the	adulter-
ation	detection	in	animal	oil	and	edible	oil	(Ayari	et	al.,	2018a,	2018b).

F I G U R E  3  CA	dendrogram	responds	to	Pure	and	adulterated	oil	samples

F I G U R E  4  Score	plot	PCA	analysis	for	different	levels	of	adulteration

F I G U R E  5  Loading	plot	for	PCA	analysis	for	different	levels	of	adulteration
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3.3 | PCR method results

Prediction	performance	of	PCR	was	estimated	using	the	parameters	
obtained from the fitted equation; R2	 and	RMSE	between	experi-
mental and predicted values. Generally, the larger the R2 and the 
lower	 the	 RMSE	 are,	 the	 better	 the	 prediction	model	 is	 (Hong	 &	
Wang,	2014).	Prediction	and	calibration	results	by	PCR	for	TGS2602	
and	MQ136	 sensor	 are	 shown	 in	 Table	 2	 and	 Figure	 7.	Hong	 and	
Wang (2014) in the detection of adulteration in cherry tomato juices 
based on electronic nose and tongue, obtained similar results.

3.4 | LDA method results

Linear discriminant analysis diagram of the E-nose signals for detec-
tion	of	oil	adulteration	is	shown	in	Figure	8	according	to	LDA-1	and	
LDA-2	components.	The	results	indicated	the	accuracy	of	85%.

As	it	can	be	seen,	the	fresh	oil	was	well	differentiated	with	three	
levels of adulterated and oxidized oil. Disturbance diagram and per-
formance	 parameters	 of	 LDA	method	 are	 listed	 in	 Tables	 3	 and	 4.	
Table 4 gives the performance parameters of the classifier according 
to the aforementioned confusion matrix including precision, accu-
racy, specificity, sensitivity, and area under the curve for (1) fresh oil, 
(2)	25%,	(3)	50%,	(4)	75%,	and	(5)	oxidized	adulteration.	The	average	
per class for precision, accuracy, specificity, sensitivity, and area under 
the	 curve	were	95.2,	89.7,	88,	97,	 and	92.5,	 respectively.	Regarding	

the	obtained	results,	the	classification	accuracy	of	fresh	oil	and	25%	
adulteration	was	 100%.	 Comparing	 this	method	with	 official	 AOCS	
method, it can be said that the chemical tests failed to detect adul-
teration	at	the	level	of	25%;	E-nose,	however,	managed	to	detect	this	
level	of	adulteration	with	accuracy	of	100%.	Addition	of	another	food	
product to a substance (even in small amounts) will change its smell 
pattern. Given the high sensitivity of the sensors and their high dif-
ferentiation ability, these sensors can detect the difference between 
the volatile substances passing on their surfaces (Bhattacharyya & 
Bandhopadhyay,	2010).	Xu	et	al.	(2016)	applied	LDA	method	and	suc-
ceeded	to	classify	the	fresh	and	spoiled	oils	with	precision	of	100%.	
Nouri,	Mohtasebi,	and	Jahanbakhshi	(2019),	to	classify	different	per-
centages	of	cocoa	 in	chocolate,	 they	obtained	a	100%	detection	ac-
curacy.	 In	 addition,	 in	 another	 study,	 they	 found	 100%	 accuracy	 in	
detecting the quality of pomegranate fruit infected with fungal disease 
(Nouri, Mohtasebi, & Rafiee, 2020). Mahmodi, Mostafaei, and Mirzaee-
Ghaleh	(2019),	obtained	87.1%	accuracy	for	classifying	different	fuels.

3.5 | ANN results

Perceptron neural network was employed to classify the five types 
of	the	fresh	and	spoiled	oils	as	well	as	those	containing	25%,	50%,	
and	75%	adulteration.	For	this	purpose,	considering	the	number	of	
available sensors, eight neurons were allocated to the input layer 
while five ones were considered for the output layer depending on 
the adulteration level. To train the network, the variation of the num-
ber	of	neurons	 in	 the	hidden	 layer	and	 the	MSE	were	determined	
by trial and error. By training the network with different number of 
neurons in the hidden layer, an optimal network with seven neurons 
in	 the	hidden	 layer	was	created.	Therefore,	 the	best	ANN	had	the	
structure	of	8-7-5,	which	showed	the	highest	accuracy	in	classifica-
tion	of	the	adulteration	in	the	oil.	CCR,	MSE,	and	R-values of the best 
structure	were	97.3%,	.0027003,	and	.0984,	respectively	(Table	5).	
These results were considerably higher than the results obtained by 

F I G U R E  6   Radar graph response of 
the sensors

TA B L E  2  Comparison	of	prediction	and	calibration	results	of	
PCR	based	on	different	data	sets

Sensor

Calibration Prediction

R2 RMSE R2 RMSE

Oil sample MQ136 .99 .2749 .99 .2855

TGS2602 .999 .0059 .999 .0058
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F I G U R E  8  LDA	results	for	different	levels	of	adulteration

Samples
Fresh 
oil

25% 
Adulterated

50% 
Adulterated

75% 
Adulterated Oxidized

LDA

Fresh oil 15 0 0 0 0

25%	Adulterated 0 15 0 0 0

50%	Adulterated 0 0 13 1 0

75%	Adulterated 0 0 2 13 5

Oxidized 0 0 0 1 10

Correct	
classification rate

88%

ANN

Fresh oil 15 0 1 0 0

25%	Adulterated 0 15 0 0 0

50%	Adulterated 0 0 13 0 0

75%	Adulterated 0 0 1 15 0

Oxidized 0 0 0 0 15

Correct	
classification rate

97.3%

TA B L E  3  Confusion	matrix	obtained	to	
identify edible oil fresh from adulteration 
LDA	and	ANN	classifier

F I G U R E  7  PCR	results	for	different	levels	of	adulteration	(a)	MQ136,	(b)	TGS2602
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Ayari	et	al.	 (2018a)	 for	detecting	adulteration	between	 the	animal	
and	edible	oil.	To	evaluate	the	oxidation	of	Chinese-style	sausage	fat	
with determination coefficients (R2s),	more	than	.914	and	.814	were	
obtained	during	processing	and	storage	(Gu,	Sun,	Tu,	&	Pan,	2017).	
Similar	 results	have	been	reported	by	other	 researchers	 (Gonzalez	
Viejo, Fuentes, Godbole, Widdicombe, & Unnithan, 2020).

Confusion	matrix	 of	 this	 network	 is	 also	 presented	 in	Table	3;	
while Table 4 lists the classification efficiency parameters according 
to the confusion matrix. The mean classification accuracy of each 
class	was	obtained	as	97.3%.	Table	4	gives	the	performance	param-
eters of the classifier according to the aforementioned confusion 
matrix including precision, accuracy, specificity, sensitivity, and area 
under	the	curve	for	 (1)	 fresh	oil,	 (2)	25%,	 (3)	50%,	 (4)	75%,	and	 (5)	
oxidized adulteration. The average per class for precision, accuracy, 
specificity,	 sensitivity,	 and	 area	 under	 the	 curve	 were	 99.3,	 98.3,	
97.5,	97.3,	and	98.9,	respectively.

3.6 | Chemical analysis of the oil

The major components of the oil samples were analyzed according 
to	official	AOCS	methods	after	E-nose	analysis	and	the	mean	values	
are listed in Table 6.

Free fatty acids are the consequence of enzymic hydrolysis of 
triglycerides in which heat and humidity play the role of catalysts. 
These compounds contribute in auto-oxidation and give rise to 
products, which are the main cause of unpleasant taste and smell in 
the oil products (Brain & Yada, 2009). Peroxide index is a criterion 
to measure the hydro-peroxides. Hydro-peroxides are the primary 
product of the oxidation in oils and fats, which can be degraded 
to volatile and nonvolatile secondary products. Peroxide index 
can	 be	 a	 proper	 indicator	 of	 initial	 stages	 of	 oxidation	 (Shahidi	 &	
Zhong,	2005).	Anisidine	index	indicates	the	secondary	products	of	
oxidation produced as the result of peroxides destruction (Bonilla, 
Atares,	 Vargas,	 &	 Chiralt,	 2012).	 According	 to	 the	 strict	 standard	
regulation in Iran, the oils with acidity index above 0.6 and peroxide 
levels	more	than	5	are	considered	as	the	spoiled	oil	(Karami,	Rasekh,	
& Mirzaee-Ghaleh, 2020).

Variance analysis on the impact of samples on the acidity, perox-
ide, anisidine, and Totox is summarized in Table 6. It can be seen that 
the effect of each components became significant at the probability 
level	of	1%.	The	mean	comparison	of	5	testing	methods	were	com-
pared by multi-range Duncan mean comparison test at probability 

Class Accuracy Precision Sensitivity Specificity AUC

LDA

Fresh oil 1 1 1 1 1

25%	Adulterated 1 1 1 1 1

50%	Adulterated 0.96 0.928571 0.866667 0.983333 0.925

75%	Adulterated 0.88 0.65 0.866667 0.883333 0.875

Oxidized 0.92 0.909091 0.666667 0.983333 0.825

Average	per	class 0.952 0.897532 0.88 0.97 0.925

ANN

Fresh oil 0.986667 0.9375 1 0.983333 0.991667

25%	Adulterated 1 1 1 1 1

50%	Adulterated 0.973333 1 0.866667 1 0.933333

75%	Adulterated 0.986667 0.9375 1 0.983333 0.991667

Oxidized 1 1 1 1 1

Average	per	class 0.989333 0.975 0.973333 0.993333 0.983333

TA B L E  4   Performance parameters for 
LDA	and	ANN	classifier

TA B L E  5  Artificial	neural	network	results	for	identify	edible	oil	
fresh from adulteration

Row Structure MSE r CCR

1 8-5-5 0.0205622 .0925 94.5

2 8-6-5 0.0195811 .0936 96.5

3 8-7-5 0.0027003 .0984 97.3

4 8-8-5 0.0186101 .0945 96.2

5 8-9-5 0.0162072 .9485 96.5

Abbreviations:	CCR,	correct	classification	rate;	MSE,	mean	square	error;	
r, correlation coefficient.

TA B L E  6  Analysis	of	variance	for	the	chemical	parameters	of	
edible oil

Sources
Mean 
square

p-Anisidine	value Treatments 6.691**

Error 0.005

Peroxide value Treatments 30.61**

Error 0.005

Acetic	acid	value Treatments 0.00002**

Error 0.0001

Totox value Treatments 72.458**

Error 0.033

**Significant	at	p	≤	.01.	
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level	of	1%	as	listed	in	Table	7.	Totox	index	is	a	criterion	of	total	oxi-
dation	including	initial	and	secondary	products	of	oxidation	(Shahidi	
&	Zhong,	2005).	The	 results	of	 this	 index	were	similar	 to	 those	of	
peroxide.	As	peroxide	 index	 is	not	a	reliable	 index	for	the	oils	oxi-
dation and it can be broken during the heat procedures, Totox index 
was	used	to	calculate	the	oil	oxidation	(Billek,	1978).

According	to	Table	7,	as	expected,	spoiled	oils	had	higher	Totox	
index compared to the fresh samples. The most important point was, 
however,	the	fact	that	the	fresh	and	25%	adulterated	samples	were	
considered	as	the	healthy	oils	and	those	with	50%,	75%,	and	100%	
adulteration were determined as the spoiled or oxidized samples. 
This means that the chemical tests could not detect adulteration in 
the	sample	containing	25%	oxidized	oil.	Therefore,	it	is	possible	that	
the producers mix their fresh oils with oxidized one at the mentioned 
level to reach to higher profit. This could be highly dangerous for 
human health.

4  | CONCLUSIONS

In this study, a portable eight-sensor E-nose was employed to inves-
tigate the oxidation degree of the edible oils. These results indicated 
that	application	of	E-nose	in	combination	with	CA,	PCA,	PCR,	LDA,	
and	ANN	methods	could	be	a	promising	approach	in	successful	de-
tection of adulteration in the edible oils.

Eight sensors of the electronic nose exhibited different response 
signals to the oxidized oils which were different from the nonox-
idized one. Based on the findings of this study, it is suggested to 
use	E-nose	along	with	CA,	PCA,	PCR,	 LDA,	 and	ANN	methods	 to	
determine adulteration in the oil. The results of this research were 
mainly	 in	 line	with	the	results	of	the	official	AOCS	method	except	
for	the	sample	with	25%	adulteration.	Therefore,	the	E-nose,	which	
is similar to the human olfaction system, requires no specific design 
to detect the volatile compounds. This technique is superior over 
the conventional official method for detection of oxidation degree in 
the edible oils as it is a nondestructive and timesaving method which 
reduced the use of toxic organic solvents. The results of this study 
showed that application of the proposed E-nose could decrease the 
dependence to the olfaction evaluator individuals or time-consum-
ing data analysis to differentiate the oxidized oils from the nonoxi-
dized ones.
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