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1  | INTRODUC TION

In recent decades, industrialization and modernization of the com-
munities have decreased the daily activities of the people; thus, 
physicians are increasingly recommended the use of low- cholesterol 
vegetable oil. The nutritional value of the vegetable oils is incompa-
rable with the animal- based or hydrogenated vegetable oils. Liquid 
vegetable oils obtained from sesame, olive, corn, soybean, and sun-
flower are among the best edible oils for human health. These oils 

contain considerable amounts of unsaturated fatty acids, which are 
vital for human health as they reduce the chance of hyperglycemia, 
atherosclerosis, and other cardiovascular diseases. Therefore, a veg-
etable oil obtained from the oilseeds is the best edible oil.

Vegetable oils are the main source of unsaturated fatty acids and 
other substances, for example, phytosterols and tocopherols in the 
human diet. Oxidation is an important chemical reaction that can 
affect the nutritional value and sensory quality of vegetable oils. 
Fatty acids are the main compounds of oil that undergo oxidation 
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Abstract
In	 this	 study,	an	electronic	nose	coupled	with	artificial	neural	network	 (ANN)	was	
used to predict the shelf life of two oil with new production date and oil with old 
production	date	over	a	period	of	150	days.	According	to	the	American	Oil	Chemists’	
Society results, the oils were oxidized after 60 days. Principal component analysis 
results indicated that all the oil samples were correctly discriminated from each other 
during their storage times, and samples of oxidized and nonoxidized oils can be prop-
erly	distinguished	from	each	other.	Two	main	components	(PC1,	PC2)	managed	to	de-
scribe 97% of the data set variance concerning the shelf life of the oil. To develop the 
ANN	models,	the	data	were	first	divided	into	three	groups:	training	(60%),	validation,	
and	test	(40%).	To	determine	the	best	model,	two	criteria	(R2 and root mean square 
error)	were	used.	The	results	revealed	that	the	ANN	model	can	be	used	as	a	powerful	
tool for pattern recognition and determination of the shelf life of oil and its oxidation 
degree at high precision. Scientific and feasible results can be obtained by matching 
ANN	and	the	results	obtained	by	metal	oxide	semiconductor	sensors	of	E-	nose.

Practical applications
One	of	the	most	important	causes	of	food	spoilage	is	lipid	oxidation.	The	American	
Oil	Chemists’	Society	(AOCS)	has	developed	a	variety	of	methods	for	assessing	the	
state of food oxidation. In this study, oil shelf life studied by a combination of artificial 
senses and chemometrics methods. The acidity, peroxide, anisidine, and Totox values 
of	the	edible	oil	samples	were	measured	according	to	the	AOCS	standard.	Principal	
component analysis and artificial neural neural methods succeeded in classifying the 
samples based on their storage time with high accuracy.
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because they have unsaturated bonds in their structure. Other un-
saturated compounds in oils, such as phytosterols and tocopherols, 
are also sensitive to oxidation (Karami et al., 2020a, 2020c; Kmiecik 
et	al.,	2019).

The quality of the oil depends on its resistance to oxidation. 
Oxidation of oil may cause loss of bioactive compounds and nutri-
ents	and	formation	of	toxic	compounds	(Castelo-	Branco	et	al.,	2016).	
Parameters that increase oil oxidation include long- term storage in 
adverse environmental conditions such as light exposure, high tem-
perature, or oxygen. Moreover, oxidation is one of the main factors 
reducing edible oil quality and often determines its shelf life (Wang 
et	al.,	2019).

Oxidation is observed during oil storage and in the frying pro-
cess/oil heating. In addition, oxidation occurs in oils under the in-
fluence of oxygen from the air. However, hydrolysis and thermal 
changes are also observed in oil exposed to humidity and high tem-
peratures in the fried product. Three reactions in heated oil give rise 
to two new components; the first group of compounds with lower 
molecular weight, compared with parent triacylglycerols, comprises 
oxidized fatty acids, hydrocarbons, ketones, aldehydes, epoxides, or 
alcohols. The second group consists of compounds with higher mo-
lecular weight than that of parent triacylglycerols, that is, trimers, 
oligomers of triacylglycerols, and dimmers. The third group of com-
pounds, that is, volatile substances, has a considerable impact on 
the sensory characteristics and quality of fried food and heated oil 
(Karami	et	al.,	2020a,	2020c;	Rusinek	et	al.,	2021).

American	Oil	Chemists’	 Society	 (AOCS)	has	developed	various	
indicators to assess the state of oil oxidation, such as the anisidine 
index	(AnV),	the	acidity	index	(AV),	the	peroxide	index	(PV),	and	the	
Totox index. These chemical tests are not difficult, but they are time- 
consuming and destructive. They also pose potential hazards to the 
environment and human health due to solvent wastes (Karami et al., 
2020b,	2020c).

Therefore, the most evident approach is to rely on an auto-
matic system such as an E- nose, which not only mimics the human 

olfaction but also is capable of detecting and classifying the toxic va-
pors through a complicated method. Some of the toxic compounds 
can	be	easily	identified	by	an	E-	nose	(Srivastava	et	al.,	2019).

Using the olfactory machine, the durability of various products 
such	as	tomatoes	(Gómez	et	al.,	2008),	apples	(Brezmes	et	al.,	2001;	
Saevels	 et	 al.,	 2004),	 raw	 milk	 and	 meat	 (Amari	 et	 al.,	 2009),	
Valerianella	 (Cortellino	 et	 al.,	 2018),	 fried	 potatoes	 (Chatterjee	
et	 al.,	 2014),	 rice	 (Malegori	 et	 al.,	 2020),	 essential	 oils	 from	 herbs	
and	fruits	(Rasekh	et	al.,	2021),	and	agricultural	products	(Baietto	&	
Wilson,	2015;	Gancarz	et	al.,	2021;	Marek	et	al.,	2020;	Wilson,	2013)	
has been determined.

Pattern recognition techniques and data analysis are required 
to detect the signals or their patterns to identify and classify the 
data.	The	E-	nose-	obtained	signal	pattern	can	be	analyzed	using	ANN	
and	statistical	tools	such	as	discriminant	factorial	analysis,	ANN,	and	
principal	component	analysis	(PCA;	Srivastava	et	al.,	2019).

In this context, the present study is aimed at the predicting of 
the shelf life of edible oils using a combination of E- nose, artificial 
neural	network	 (ANN)	and	PCA.	The	results	of	 this	 research	were	
confirmed	by	 comparison	with	 the	AOCS	methods.	 In	 this	 regard,	
the development of a proper and powerful classification model ca-
pable	of	offering	satisfactory	results	(of	edible	oils	shelf	life)	under	
real conditions sounds crucial. This method can be useful as a simple 
and cost- effective method to control the quality of oils during their 
storage period.

2  | METHODS

Edible oils (which is a combination of three oils: soybean, sunflower, 
and	canola)	oil	with	new	production	date	 (ONPD)	and	oil	with	old	
production	 date	 (OOPD)	was	 prepared.	 The	 samples	were	 stored	
at room temperature. Twenty milliliters of each oil was poured into 
a	50-	ml	sample	container.	 In	 total,	40	oil	samples	with	ONPD	and	
OOPD were tested.

F I G U R E  1  Schematic	of	an	artificial	olfactory	(E-	nose)	system.	The	components	of	this	system	consist	of	the	following	parts:	(a)	air	filter	
(activated	charcoal	to	remove	VOC	hydrocarbons),	(b)	sample	headspace	chamber,	(c)	solenoid	air	valves,	(d)	diaphragm	pump,	(e)	E-	nose	
sensor	array	chamber,	(f)	data	acquisition	card,	(g)	personal	computer,	and	(h)	air	outlet	line	from	sensor	array	chamber	(for	exhaust	gases)
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The olfactory machine used consisted of electronic components, 
eight sensors, pumps, electronic valves, air filters, and a software 
section	for	data	analysis	(Figure	1;	Ayari	et	al.,	2018b).

Data were collected from oil samples in three phases of clean-
ing, measuring, and cleaning the sensors, which took a total time of 
550 s. In the first phase, the air was pumped into the sensor chamber 
for 200 s so that the response of the sensors reached the baseline, 
and the system was ready for experiments. During the measurement 
process, the gaseous compounds of the sample headspace were 
pumped through a Teflon tube into the sensor array, after passing 
through the solenoid valves, changing the output voltage ratio of 
the sensors. The measurement phase lasted 150 s, which was long 
enough	for	the	sensors	to	reach	stable	signal	values.	After	each	mea-
surement, the filtered air was pumped into the sensor chamber by 
activated	carbon	for	100	s	(cleaning	time)	from	the	other	port	of	the	
device. The sensor array included eight metal oxide semiconductor 
sensors.	 MQ3	 (alcohol),	 TGS822	 (organic	 solvent	 steam),	 MQ136	
(sulfur	 dioxide),	 MQ9	 (carbon	 monoxide),	 TGS813	 (methane,	 pro-
pane,	and	butane),	MQ135	(ammonia,	benzene,	and	sulfide	steams),	
TGS2602	 (hydrogen	 sulfide,	 ammonia,	 and	 toluene),	 and	TGS2620	

(alcohol	 and	 organic	 solvent	 steam)	 (Karami	 et	 al.,	 2020a,	 2020b,	
2020c).

The computer stored the output signal data of the sensors during 
the	measurement	period,	as	one	datum	per	second.	After	the	mea-
surement process was complete, the obtained data were stored for 
further	analysis.	Application	of	the	fraction	method	aimed	to	correct	
the baseline. In this method, the response of the sensors becomes 
dimensionless in addition to normalization to eliminate noise or pos-
sible	deviation	(Karami	et	al.,	2020a,	2020b):

where, Ys(t),	Xs(0),	and	Xs(t)	 indicate	the	normalized	sensor	response,	
the baseline, and the sensor response, respectively.

Then,	the	PCA	method	was	used	to	determine	the	shelf	 life	of	
the edible oils using the obtained data. The data obtained from the 
mentioned	processing	(fraction	method)	were	applied	as	the	input.	
PCA	 is	 a	multivariable,	nonsupervised	method	 for	 compacting	 the	
linear	data	and	feature	extraction.	PCA	can	be	also	used	to	decrease	
the data dimension; in a way that it preserved those components of 
the data set with the highest impact on the variance. This method 
has been extensively used to demonstrate the E- nose responses to 
simple and complex smells offering qualitative data for pattern rec-
ognition. To determine the shelf life of the edible oil samples, the 
PCA	method	was	used	through	Unscrambler	x10.4.

Application	of	the	ANN	is	an	innovative	method	to	solve	various	
engineering problems. This method relies on finding the intrinsic re-
lationship between the effective parameters of the problem, learning 
and	then	their	generalization	to	similar	samples.	ANN	is	one	of	the	
most	common	methods	of	artificial	intelligence	(AI),	which	was	first	
presented in the 60 s . The multilayer perceptron is one of the most 
applied	ANN	methods.	This	method	often	involves	three	layers	such	
as input, output, and hidden layers. The independent and dependent 
variables are placed in the input and output layers, respectively. 
Generally,	the	ANN	structure	is	composed	of	a	group	of	computing	
units known as neurons or nodes. Each layer can encompass several 
neurons. The units of the input layer are only responsible for distrib-
uting the input values to the subsequent layers; thus, they do not 
conduct	any	computations	(Haykin,	1998).	Theoretically,	there	is	no	
limitation for the number of hidden layers and their nodes; they can 
be determined by trial and error. Equations 7– 11 can be used to de-
termine	the	number	of	nodes	in	the	hidden	layer	(Amari	et	al.,	2009):

(1)Ys(t) =
Xs(t) − Xs(0)

Xs(0)

(2)≤ 2 × Ni + 1

(3)
(
Ni + No

)
∕2

(4)2Ni∕3

(5)
√(

Ni × No

)

(6)2Ni

TA B L E  1  Analysis	of	variance	for	the	chemical	parameters	of	
edible oil

Sources
Degrees of 
freedom

Mean 
square

p-	Anisidine	value Factor	A 1 88.988*

Factor B 5 0.571*

AB 5 0.368*

Error 24 0.071

Total 35

Peroxide value Factor	A 1 0.034

Factor B 5 9.682*

AB 5 0.052ns

Error 24 0.020

Total 35

Acetic	acid	value Factor	A 1 0.314*

Factor B 5 0.120*

AB 5 0.122*

Error 24 0.000

Total 35

Totox value Factor	A 1 82.204*

Factor B 5 34.534*

AB 5 0.697*

Error 24 0.104

Total 35

Note: ns, non significant.
*Significant at p	≤	.01.
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In the above equations, the number of the hidden layer nodes 
can	be	calculated	 from	 the	number	of	nodes	 in	 the	 input	 (Ni)	 and	
output	(NO)	layers.	The	hyperbolic	tangent	activation	function	was	
used for the latent layer. The number of output layer neurons was 

selected	based	on	the	experiment	 type.	According	to	 three	differ-
ent	experiments	performed,	initially,	the	data	of	two	oils	(ONPD	and	
OOPD)	in	six	periods	were	used	for	the	shelf	life	of	the	oil,	that	is,	
the output layer had 12 neurons to evaluate the shelf life of the oil. 

F I G U R E  2   Result of Duncan mean comparison test

F I G U R E  3   Score plot of principal component analysis for predicting the shelf life of the oil
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The	next	test	was	to	identify	healthy	ONPD	and	OOPD	(i.e.,	the	first	
three	periods	when	the	oil	has	not	yet	been	oxidized);	because	their	
production	dates	 (PDs)	were	different,	 they	were	 tried	 to	be	 sep-
arated from each other; therefore, for this experiment, the output 
layer	had	six	neurons.	And	in	the	next	step,	the	only	purpose	was	to	
detect nonoxidized and oxidized oils, regardless of their PD, so two 
neurons were considered for this experiment.

Accordingly,	 training,	 validation,	 and	 experiment	 allocated	 60%,	
20%, and 20% to themselves, respectively. The neural network training 
principally is based on trial and error. Efficiency evaluation is necessary 
after the training process of the neural network with proper structure. 
The optimal topology for the mentioned neural network is the highest 
value for the coefficient of determination of R2 and the lowest for root 
mean	square	error	 (RMSE).	The	model	 input	 included	data	obtained	
from the response of eight sensors, so eight input layers were consid-
ered for the experiments. The confusion matrix was used to select the 
best model. Sensitivity, specificity, accuracy, and precision parameters 
were	used	to	analyze	the	system	performance	(Basri	et	al.,	2017):

where,	TP	(true	positive),	TN	(true	negative),	FP	(false	positive),	and	FN	
(false	negative)	are	indicated,	and	all	values	are	dimensionless.

In this study, supervised learning algorithm was used for training 
and	softmax	activation	function	for	the	output	layer.	After	training	
the	ANN,	its	performance	has	to	be	investigated.	For	this	purpose,	
RMSE and coefficient of determination (R2)	were	used	for	fitting	the	
predicted samples to the real ones. To this end, 60%, 20%, and 20% 
of the data were used for training, validation, and test, respectively. (7)

Sensitivity =
TP

TP + FN

(8)Specificity =
TN

TN + FP

(9)Precision =
TP

TP + FP

(10)Accuracy =
TP + TN

TP + TN + FN + FP

(11)AUC =
Sensitivity + Precision

2

Correct 
classification 
rate (%)

Test Train

Topology

Row

R2 RMSE R2 RMSE

66.6 .586 0.0519 .644 0.0451 8-	5-	12 1

68.8 .619 0.0475 .701 0.0387 8-	6-	12 2

71.9 .620 0.0496 .712 0.0311 8-	7-	12 3

73.3 .657 0.0378 .748 0.0244 8-	8-	12 4

75.1 .669 0.0315 .769 0.0228 8-	9-	12 5

74.9 .698 0.0294 .788 0.0171 8-	10-	12 6

79.9 .713 0.0324 .824 0.0123 8-	11-	12 7

81.9 .738 0.0299 .836 0.0120 8-	12-	12 8

88.5 .741 0.0275 .840 0.0089 8-	13-	12 9

89.1 .789 0.0283 .844 0.0072 8-	14-	12 10

93.3 .817 0.0071 .868 0.0069 8- 15- 12 11

87.1 .749 0.0099 .827 0.0088 8-	16-	12 12

88.6 .756 0.0087 .817 0.0121 8-	17-	12 13

91.1 .791 0.0085 .809 0.0179 8-	18-	12 14

95.6 .912 0.0179 .937 0.0167 8-	6-	6 1

96.7 .916 0.0242 .980 0.0054 8-	7-	6 2

96.3 .908 0.0171 .969 0.0083 8-	8-	6 3

96.1 .930 0.0118 .958 0.0113 8-	9-	6 4

97.5 .930 0.0108 .999 0.0000 8- 10- 6 5

97.0 .922 0.0122 .982 0.0199 8-	11-	6 6

96.2 .958 0.0208 .993 0.0034 8-	4-	2 1

99.6 .999 0.0000 .0986 0.0034 8- 5- 2 2

97.3 .992 0.0076 .992 0.0039 8-	6-	2 3

95.8 .948 0.0798 .991 0.0041 8-	7-	2 4

Bold parts show the best neural network structure for classification oils.

TA B L E  2  Artificial	neural	network	
results
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F I G U R E  4  Confusion	matrix	obtained	for	(a)	shelf	life,	(b)	detection	of	nonoxidized	oils	in	six	groups,	and	(c)	classification	of	oxidized	and	
nonoxidized oils
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ANN	is	based	on	trial	and	error	to	find	the	best	network	configura-
tion through varying the number of hidden layers and their neurons, 
activity functions, training algorithm, and the number of iterations 
in	the	training	stage	to	lead	to	the	intended	output	parameter.	After	
training	the	ANN,	its	performance	has	to	be	investigated.	The	best	
network is the one with the highest R2 and the lowest RMSE:

where, Xpi and Xei are the predicted and observed values, respectively, 
‼

X shows the mean values, and n denotes the number of data.
The parameters of acidity, peroxide, and anisidine were mea-

sured	using	AOCS	method.	Equation	 (14)	can	be	used	 to	calculate	
the	Totox	index	(Hai	&	Wang,	2006):

The statistical analysis was conducted using a completely ran-
domized factorial test.

3  | E XPERIMENTS AND DISCUSSIONS

3.1 | Chemical analysis of oil

After	 measurement	 by	 olfactory	 machine,	 a	 sample	 was	 meas-
ured	by	AOCS	methods.	The	first	step	in	identifying	the	primary	
stages of oxidation is to determine the peroxide index. The aver-
age peroxide for the oils on the first day was about 3 and after 
150 days, it reached 6.5. Because peroxide is not a reliable indica-
tor	of	oxidation,	so	the	Totox	index	was	used	(Equation	14)	(Billek	
et	al.,	1978).

Factorial experiment was performed with two factors of storage 
time	and	oil	 type.	The	 type	of	oil	 (ONPD	and	OOPD)	and	storage	
time	(150	days)	and	the	tests	were	evaluated	at	30-	day	intervals.

(12)R2 = 1 −

⎡⎢⎢⎢⎣

n�
1

⎛⎜⎜⎜⎝

Xpi − Xei

Xpi−
‼

X

⎞⎟⎟⎟⎠

2 ⎤⎥⎥⎥⎦

(13)RMSE =

√√√√1

n

n∑
1

(
Xpi − Xei

)2

(14)Totox = 2 × (PV) + AnV

TA B L E  3   Performance parameters of artificial neural network models

Topology
Days of storage— type 
of oil Accuracy Precision Sensitivity Specificity AUC

8-	15-	12 1-	ONPD 0.995 1.000 0.950 1.000 0.975

1- OOPD 0.995 0.952 1.000 0.995 0.997

30-	ONPD 1.000 1.000 1.000 1.000 1.000

30- OOPD 1.000 1.000 1.000 1.000 1.000

60-	ONPD 0.986 0.870 1.000 0.984 0.992

60- OOPD 0.995 0.941 1.000 0.995 0.997

90-	ONPD 0.995 0.944 1.000 0.995 0.997

90- OOPD 1.000 1.000 1.000 1.000 1.000

120-	ONPD 0.990 0.895 1.000 0.990 0.995

120- OOPD 0.986 0.857 1.000 0.984 0.992

150-	ONPD 0.990 0.895 1.000 0.990 0.995

150- OOPD 0.986 0.870 1.000 0.984 0.992

Average	per	class 0.993 0.935 0.995 0.993 0.994

8-	10-	6 1-	ONPD 1.000 1.000 1.000 1.000 1.000

1- OOPD 1.000 1.000 1.000 1.000 1.000

30-	ONPD 1.000 1.000 1.000 1.000 1.000

30- OOPD 1.000 1.000 1.000 1.000 1.000

60-	ONPD 0.975 0.869 1.000 0.969 0.984

60- OOPD 0.975 1.000 0.850 1.000 0.925

Average	per	class 0.992 0.974 1.000 0.995 0.997

8-	5-	2 Nonoxidized 0.995 1 0.991 1 0.995

Oxidized 0.995 0.991 1 0.991 0.995

Average	per	class 0.996 0.996 0.996 0.996 0.996
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The results of analysis of variance of oils for Totox, peroxide, 
acidity, and anisidine indices are listed in Table 1. The effect of fac-
tor	A	 (oil	 type)	 and	 factor	B	 (time)	 as	well	 as	 interaction	 (AB)	was	
significant for Totox, acidity, and anisidine (at the p	 value	 of	 1%),	
although	 factor	 A	 was	 not	 significant	 for	 the	 PV	 index.	 Figure	 2	
shows the comparison of mean values using the Duncan Multirange 
Comparison	Test	at	the	1%	probability	level.

According	to	the	results	obtained	during	the	storage	period	in	both	
types	of	oils	(ONPD	and	OOPD),	the	amount	of	Totox	has	increased.	
According	to	Figure	2,	the	highest	amount	of	acidity	(0.6)	was	observed	
for	the	OOPD	in	two	time	periods	(120	and	150	days),	whereas	the	
lowest	amount	for	the	ONPD	(0.4)	was	observed	in	the	storage	period	
of 90 days. These results were consistent with the results obtained 
by	Ngando	et	al.	(2011).	The	amount	of	peroxide	on	the	first	day	for	
the	ONPD	and	OOPD	was	3.36	and	3,	respectively.	According	to	the	
result	obtained	for	the	peroxide	index,	the	effect	of	parameter	A	(oil	
type)	was	not	significant	at	the	level	of	1%	probability.	The	peroxide	
index is a function of oxidation time and increases with the opening of 
the oil door and the onset of oxidative reactions. The peroxide index 
has an ascending trend and has reached its maximum 6.6 (meqO2/kg)	
at	the	end	of	150	days.	According	to	Figure	2,	the	highest	amount	of	
peroxide	 (6.6)	was	observed	 in	the	ONPD	on	day	150,	whereas	the	
lowest	amount	of	peroxide	(3)	was	observed	in	the	OOPD	on	the	first	
day. Unlike the peroxide index, the anisidine shows the oxidation sec-
ondary products due to the degradation of hydroperoxides (Bonilla 
et	al.,	2012).	According	to	Figure	2,	 the	anisidine	of	 the	OOPD	was	
higher	than	the	ONPD.	This	index	initially	shows	an	increasing	trend	
and then decreases slightly, which may be related to the complete de-
struction of hydroperoxides. The Totox index is an indicator for mea-
suring total oxidation, that is, the primary and secondary products of 
oxidation	(Shahidi	&	Zhong,	2021).	The	highest	index	of	Totox	(22.3)	
was observed in the OOPD after 150 days, whereas the lowest index 
of	Totox	(12.63)	was	observed	on	the	first	day	for	the	ONPD.

3.2 | Data exploratory analysis

The voltage response of the sensors was measured in three repli-
cated for 40 oil samples in a 150- day period at 1- month intervals. 
The mean of the sensor array response was then recorded for 240 
samples.	An	8	× 240 feature matrix was considered for input of the 
data	analysis	methods.	Nonsupervised	methods	such	as	PCA	are	the	
first step if data analysis. The data obtained from the eight sensors 
were	reduced	two-	dimensionally	using	PCA.	This	method	is	suitable	
for the data analysis with no prior knowledge on the samples class, 
where the objective is to form a hypothesis not confirming that. 
Two- dimensional score diagrams of the shelf life of the oil samples 
are depicted in Figure 3. The two main components managed to de-
scribe	97%	of	the	data	set	variance	(PC1	=	91%	and	PC2	=	6%)	 in	
discriminating	the	shelf	life	of	the	oil	samples.	As	can	be	observed,	
nonoxidized oils are on the left side of the score diagram, whereas 
the spoiled ones were placed on the right side. It can also be seen 

that the data for each month showed proper differences during the 
storage	time.	The	results	of	 the	AOCS	methods	confirm	the	 initial	
classification	obtained	in	the	score	plot.	Rasekh	and	Karami	(2021a)	
reported similar results for predicting fruit fraud.

Accordingly,	MQ136	and	TGS2602	sensors	possessed	the	high-
est significance in volatile pattern recognition and could be the best 
choice in the determination of the shelf life of the oil. On the other 
hand,	TGS813,	TGS2620,	MQ9,	 and	MQ135	had	 the	 lowest	mean	
values and influence in sample discrimination.

3.3 | ANN result

Perceptron neural network was used for the classification of the 
shelf life of the oil. For this purpose, three different analyses were 
used to examine the shelf life (based on the storage time [150 days 
or	6	periods]	for	two	types	of	oil	[ONPD	and	OOPD]),	differentiate	
the healthy oil from spoiled one, and investigate the healthy oils of 
both	groups	 (ONPD	and	OOPD).	 For	 the	 input	 layer,	 according	 to	
the number of sensors, eight neurons were considered; and for the 
output layer, it was determined based on the type of the experiment 
(12,	 2,	 and	6	neurons,	 respectively).	 Equations	7–	11	were	used	 to	
find the optimal neurons in the hidden layers. In this regard, the net-
work	with	the	structure	of	8-	15-	12	exhibited	the	highest	accuracy.	
The network training was conducted by logarithmic sigmoid transfer 
function and learning method of Lunburg– Markorat. RMSE and R2 of 
the train and test data, as well as the correct classification rate of the 
best structure, are listed in Table 2.

According	 to	 the	 results,	 the	network	with	 the	 topology	of	 8-	
15- 12 exhibited the best performance with the lower train and test 
error and a higher coefficient of determination. To this end, the net-
work	with	the	topology	of	8-	10-	6	possessed	the	best	performance	in	
differentiating the nonoxidized oils in a way that its RMSE was 0.001 
and 0.01 for the training and test, respectively. Moreover, the men-
tioned topology resulted in R2 values of .99 and .93 for the train and 
test data, respectively. In another experiment to differentiate non-
oxidized	from	oxidized	oils,	the	topology	of	8-	5-	2	resulted	in	the	best	
performance as it exhibited the highest accuracy for the train and 
test data. The obtained values were far higher than those reported 
by	Ayari	et	al.	 (2018a)	 for	the	detection	of	 the	oxidation	 in	animal	
and vegetable oils. These results had also higher accuracy compared 
with	the	work	of	Yu	et	al.	(2008)	concerning	green	tea	classification	
using	back	propagation	error	ANN	based	on	the	data	provided	by	an	
E-	nose.	Rasekh	and	Karami	(2021b)	also	reported	similar	results	for	
predicting fruit fraud.

The confusion matrix and classification performance param-
eters	are	shown	in	Figure	4	and	Table	3.	Among	240	data	for	the	
determination of the shelf life, discrimination of the healthy oils 
with	 two	 types	of	 oil	 (ONPD	and	OOPD),	 and	detection	of	 the	
oxidized oils from nonoxidized ones, the proposed method man-
aged to correctly allocate 224, 237, and 239 data in their corre-
sponding	groups.	As	Table	3	suggests,	the	ANN	method	offered	
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high accuracy and sensitivity in the classification of the edible 
oils.

The results of this study are in agreement with the work of Wei 
et	al.	 (2009)	who	used	an	E-	tongue	to	classify	honey	samples	with	
different flower and geographical origins. Their results were then an-
alyzed	by	different	pattern	recognition	techniques	of	PCA	and	ANN.	
They	 showed	 that	 ANN	 is	 the	 most	 effective	 feature	 extraction	
method	in	comparison	with	CA	and	PCA	methods	with	a	correction	
level	of	95%	(Wei	et	al.,	2009).	These	results	were	also	better	than	
the	 other	 studies	 using	 ANN	methods	 (Hai	 &	Wang,	 2006;	 Kiani	
et	al.,	2017;	Singh	et	al.,	2014).

4  | CONCLUSION

The oil durability studies were conducted under normal conditions 
for 150 days. These experiments were repeated each month using 
both	the	chemical	method	of	AOCS	and	the	proposed	E-	nose,	which	
led to the following results:

• E- nose can be exploited for the shelf life and oxidation of the oil 
with satisfactory results.

•	 During	the	storage	time	of	the	oil	samples,	PCA	and	ANN	meth-
ods succeeded in classifying the samples based on their storage 
time with high accuracy.

• The correlation between the measured and predicted smell pa-
rameters of the edible oil revealed high prediction performance 
based on the output signals of the E- nose.

Generally speaking, as a few studies have addressed the use of 
E- nose in the determination of the shelf life of oil, the results of this 
study	indicate	that	E-	nose,	in	combination	with	ANN,	can	be	used	to	
determine the shelf life of oil with satisfactory results.
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