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1  | INTRODUC TION

In recent decades, industrialization and modernization of the com-
munities have decreased the daily activities of the people; thus, 
physicians are increasingly recommended the use of low-cholesterol 
vegetable oil. The nutritional value of the vegetable oils is incompa-
rable with the animal-based or hydrogenated vegetable oils. Liquid 
vegetable oils obtained from sesame, olive, corn, soybean, and sun-
flower are among the best edible oils for human health. These oils 

contain considerable amounts of unsaturated fatty acids, which are 
vital for human health as they reduce the chance of hyperglycemia, 
atherosclerosis, and other cardiovascular diseases. Therefore, a veg-
etable oil obtained from the oilseeds is the best edible oil.

Vegetable oils are the main source of unsaturated fatty acids and 
other substances, for example, phytosterols and tocopherols in the 
human diet. Oxidation is an important chemical reaction that can 
affect the nutritional value and sensory quality of vegetable oils. 
Fatty acids are the main compounds of oil that undergo oxidation 
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Abstract
In this study, an electronic nose coupled with artificial neural network (ANN) was 
used to predict the shelf life of two oil with new production date and oil with old 
production date over a period of 150 days. According to the American Oil Chemists’ 
Society results, the oils were oxidized after 60 days. Principal component analysis 
results indicated that all the oil samples were correctly discriminated from each other 
during their storage times, and samples of oxidized and nonoxidized oils can be prop-
erly distinguished from each other. Two main components (PC1, PC2) managed to de-
scribe 97% of the data set variance concerning the shelf life of the oil. To develop the 
ANN models, the data were first divided into three groups: training (60%), validation, 
and test (40%). To determine the best model, two criteria (R2 and root mean square 
error) were used. The results revealed that the ANN model can be used as a powerful 
tool for pattern recognition and determination of the shelf life of oil and its oxidation 
degree at high precision. Scientific and feasible results can be obtained by matching 
ANN and the results obtained by metal oxide semiconductor sensors of E-nose.

Practical applications
One of the most important causes of food spoilage is lipid oxidation. The American 
Oil Chemists’ Society (AOCS) has developed a variety of methods for assessing the 
state of food oxidation. In this study, oil shelf life studied by a combination of artificial 
senses and chemometrics methods. The acidity, peroxide, anisidine, and Totox values 
of the edible oil samples were measured according to the AOCS standard. Principal 
component analysis and artificial neural neural methods succeeded in classifying the 
samples based on their storage time with high accuracy.
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because they have unsaturated bonds in their structure. Other un-
saturated compounds in oils, such as phytosterols and tocopherols, 
are also sensitive to oxidation (Karami et al., 2020a, 2020c; Kmiecik 
et al., 2019).

The quality of the oil depends on its resistance to oxidation. 
Oxidation of oil may cause loss of bioactive compounds and nutri-
ents and formation of toxic compounds (Castelo-Branco et al., 2016). 
Parameters that increase oil oxidation include long-term storage in 
adverse environmental conditions such as light exposure, high tem-
perature, or oxygen. Moreover, oxidation is one of the main factors 
reducing edible oil quality and often determines its shelf life (Wang 
et al., 2019).

Oxidation is observed during oil storage and in the frying pro-
cess/oil heating. In addition, oxidation occurs in oils under the in-
fluence of oxygen from the air. However, hydrolysis and thermal 
changes are also observed in oil exposed to humidity and high tem-
peratures in the fried product. Three reactions in heated oil give rise 
to two new components; the first group of compounds with lower 
molecular weight, compared with parent triacylglycerols, comprises 
oxidized fatty acids, hydrocarbons, ketones, aldehydes, epoxides, or 
alcohols. The second group consists of compounds with higher mo-
lecular weight than that of parent triacylglycerols, that is, trimers, 
oligomers of triacylglycerols, and dimmers. The third group of com-
pounds, that is, volatile substances, has a considerable impact on 
the sensory characteristics and quality of fried food and heated oil 
(Karami et al., 2020a, 2020c; Rusinek et al., 2021).

American Oil Chemists’ Society (AOCS) has developed various 
indicators to assess the state of oil oxidation, such as the anisidine 
index (AnV), the acidity index (AV), the peroxide index (PV), and the 
Totox index. These chemical tests are not difficult, but they are time-
consuming and destructive. They also pose potential hazards to the 
environment and human health due to solvent wastes (Karami et al., 
2020b, 2020c).

Therefore, the most evident approach is to rely on an auto-
matic system such as an E-nose, which not only mimics the human 

olfaction but also is capable of detecting and classifying the toxic va-
pors through a complicated method. Some of the toxic compounds 
can be easily identified by an E-nose (Srivastava et al., 2019).

Using the olfactory machine, the durability of various products 
such as tomatoes (Gómez et al., 2008), apples (Brezmes et al., 2001; 
Saevels et  al.,  2004), raw milk and meat (Amari et  al.,  2009), 
Valerianella (Cortellino et  al.,  2018), fried potatoes (Chatterjee 
et  al.,  2014), rice (Malegori et  al.,  2020), essential oils from herbs 
and fruits (Rasekh et al., 2021), and agricultural products (Baietto & 
Wilson, 2015; Gancarz et al., 2021; Marek et al., 2020; Wilson, 2013) 
has been determined.

Pattern recognition techniques and data analysis are required 
to detect the signals or their patterns to identify and classify the 
data. The E-nose-obtained signal pattern can be analyzed using ANN 
and statistical tools such as discriminant factorial analysis, ANN, and 
principal component analysis (PCA; Srivastava et al., 2019).

In this context, the present study is aimed at the predicting of 
the shelf life of edible oils using a combination of E-nose, artificial 
neural network (ANN) and PCA. The results of this research were 
confirmed by comparison with the AOCS methods. In this regard, 
the development of a proper and powerful classification model ca-
pable of offering satisfactory results (of edible oils shelf life) under 
real conditions sounds crucial. This method can be useful as a simple 
and cost-effective method to control the quality of oils during their 
storage period.

2  | METHODS

Edible oils (which is a combination of three oils: soybean, sunflower, 
and canola) oil with new production date (ONPD) and oil with old 
production date (OOPD) was prepared. The samples were stored 
at room temperature. Twenty milliliters of each oil was poured into 
a 50-ml sample container. In total, 40 oil samples with ONPD and 
OOPD were tested.

F I G U R E  1  Schematic of an artificial olfactory (E-nose) system. The components of this system consist of the following parts: (a) air filter 
(activated charcoal to remove VOC hydrocarbons), (b) sample headspace chamber, (c) solenoid air valves, (d) diaphragm pump, (e) E-nose 
sensor array chamber, (f) data acquisition card, (g) personal computer, and (h) air outlet line from sensor array chamber (for exhaust gases)
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The olfactory machine used consisted of electronic components, 
eight sensors, pumps, electronic valves, air filters, and a software 
section for data analysis (Figure 1; Ayari et al., 2018b).

Data were collected from oil samples in three phases of clean-
ing, measuring, and cleaning the sensors, which took a total time of 
550 s. In the first phase, the air was pumped into the sensor chamber 
for 200 s so that the response of the sensors reached the baseline, 
and the system was ready for experiments. During the measurement 
process, the gaseous compounds of the sample headspace were 
pumped through a Teflon tube into the sensor array, after passing 
through the solenoid valves, changing the output voltage ratio of 
the sensors. The measurement phase lasted 150 s, which was long 
enough for the sensors to reach stable signal values. After each mea-
surement, the filtered air was pumped into the sensor chamber by 
activated carbon for 100 s (cleaning time) from the other port of the 
device. The sensor array included eight metal oxide semiconductor 
sensors. MQ3 (alcohol), TGS822 (organic solvent steam), MQ136 
(sulfur dioxide), MQ9 (carbon monoxide), TGS813 (methane, pro-
pane, and butane), MQ135 (ammonia, benzene, and sulfide steams), 
TGS2602 (hydrogen sulfide, ammonia, and toluene), and TGS2620 

(alcohol and organic solvent steam) (Karami et al., 2020a, 2020b, 
2020c).

The computer stored the output signal data of the sensors during 
the measurement period, as one datum per second. After the mea-
surement process was complete, the obtained data were stored for 
further analysis. Application of the fraction method aimed to correct 
the baseline. In this method, the response of the sensors becomes 
dimensionless in addition to normalization to eliminate noise or pos-
sible deviation (Karami et al., 2020a, 2020b):

where, Ys(t), Xs(0), and Xs(t) indicate the normalized sensor response, 
the baseline, and the sensor response, respectively.

Then, the PCA method was used to determine the shelf life of 
the edible oils using the obtained data. The data obtained from the 
mentioned processing (fraction method) were applied as the input. 
PCA is a multivariable, nonsupervised method for compacting the 
linear data and feature extraction. PCA can be also used to decrease 
the data dimension; in a way that it preserved those components of 
the data set with the highest impact on the variance. This method 
has been extensively used to demonstrate the E-nose responses to 
simple and complex smells offering qualitative data for pattern rec-
ognition. To determine the shelf life of the edible oil samples, the 
PCA method was used through Unscrambler x10.4.

Application of the ANN is an innovative method to solve various 
engineering problems. This method relies on finding the intrinsic re-
lationship between the effective parameters of the problem, learning 
and then their generalization to similar samples. ANN is one of the 
most common methods of artificial intelligence (AI), which was first 
presented in the 60 s . The multilayer perceptron is one of the most 
applied ANN methods. This method often involves three layers such 
as input, output, and hidden layers. The independent and dependent 
variables are placed in the input and output layers, respectively. 
Generally, the ANN structure is composed of a group of computing 
units known as neurons or nodes. Each layer can encompass several 
neurons. The units of the input layer are only responsible for distrib-
uting the input values to the subsequent layers; thus, they do not 
conduct any computations (Haykin, 1998). Theoretically, there is no 
limitation for the number of hidden layers and their nodes; they can 
be determined by trial and error. Equations 7–11 can be used to de-
termine the number of nodes in the hidden layer (Amari et al., 2009):

(1)Ys(t) =
Xs(t) − Xs(0)

Xs(0)

(2)≤ 2 × Ni + 1

(3)
(
Ni + No

)
∕2

(4)2Ni∕3

(5)
√(

Ni × No

)

(6)2Ni

TA B L E  1  Analysis of variance for the chemical parameters of 
edible oil

Sources
Degrees of 
freedom

Mean 
square

p-Anisidine value Factor A 1 88.988*

Factor B 5 0.571*

AB 5 0.368*

Error 24 0.071

Total 35

Peroxide value Factor A 1 0.034

Factor B 5 9.682*

AB 5 0.052ns

Error 24 0.020

Total 35

Acetic acid value Factor A 1 0.314*

Factor B 5 0.120*

AB 5 0.122*

Error 24 0.000

Total 35

Totox value Factor A 1 82.204*

Factor B 5 34.534*

AB 5 0.697*

Error 24 0.104

Total 35

Note: ns, non significant.
*Significant at p ≤ .01.
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In the above equations, the number of the hidden layer nodes 
can be calculated from the number of nodes in the input (Ni) and 
output (NO) layers. The hyperbolic tangent activation function was 
used for the latent layer. The number of output layer neurons was 

selected based on the experiment type. According to three differ-
ent experiments performed, initially, the data of two oils (ONPD and 
OOPD) in six periods were used for the shelf life of the oil, that is, 
the output layer had 12 neurons to evaluate the shelf life of the oil. 

F I G U R E  2   Result of Duncan mean comparison test

F I G U R E  3   Score plot of principal component analysis for predicting the shelf life of the oil
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The next test was to identify healthy ONPD and OOPD (i.e., the first 
three periods when the oil has not yet been oxidized); because their 
production dates (PDs) were different, they were tried to be sep-
arated from each other; therefore, for this experiment, the output 
layer had six neurons. And in the next step, the only purpose was to 
detect nonoxidized and oxidized oils, regardless of their PD, so two 
neurons were considered for this experiment.

Accordingly, training, validation, and experiment allocated 60%, 
20%, and 20% to themselves, respectively. The neural network training 
principally is based on trial and error. Efficiency evaluation is necessary 
after the training process of the neural network with proper structure. 
The optimal topology for the mentioned neural network is the highest 
value for the coefficient of determination of R2 and the lowest for root 
mean square error (RMSE). The model input included data obtained 
from the response of eight sensors, so eight input layers were consid-
ered for the experiments. The confusion matrix was used to select the 
best model. Sensitivity, specificity, accuracy, and precision parameters 
were used to analyze the system performance (Basri et al., 2017):

where, TP (true positive), TN (true negative), FP (false positive), and FN 
(false negative) are indicated, and all values are dimensionless.

In this study, supervised learning algorithm was used for training 
and softmax activation function for the output layer. After training 
the ANN, its performance has to be investigated. For this purpose, 
RMSE and coefficient of determination (R2) were used for fitting the 
predicted samples to the real ones. To this end, 60%, 20%, and 20% 
of the data were used for training, validation, and test, respectively. (7)

Sensitivity =
TP

TP + FN

(8)Specificity =
TN

TN + FP

(9)Precision =
TP

TP + FP

(10)Accuracy =
TP + TN

TP + TN + FN + FP

(11)AUC =
Sensitivity + Precision

2

Correct 
classification 
rate (%)

Test Train

Topology

Row

R2 RMSE R2 RMSE

66.6 .586 0.0519 .644 0.0451 8-5-12 1

68.8 .619 0.0475 .701 0.0387 8-6-12 2

71.9 .620 0.0496 .712 0.0311 8-7-12 3

73.3 .657 0.0378 .748 0.0244 8-8-12 4

75.1 .669 0.0315 .769 0.0228 8-9-12 5

74.9 .698 0.0294 .788 0.0171 8-10-12 6

79.9 .713 0.0324 .824 0.0123 8-11-12 7

81.9 .738 0.0299 .836 0.0120 8-12-12 8

88.5 .741 0.0275 .840 0.0089 8-13-12 9

89.1 .789 0.0283 .844 0.0072 8-14-12 10

93.3 .817 0.0071 .868 0.0069 8-15-12 11

87.1 .749 0.0099 .827 0.0088 8-16-12 12

88.6 .756 0.0087 .817 0.0121 8-17-12 13

91.1 .791 0.0085 .809 0.0179 8-18-12 14

95.6 .912 0.0179 .937 0.0167 8-6-6 1

96.7 .916 0.0242 .980 0.0054 8-7-6 2

96.3 .908 0.0171 .969 0.0083 8-8-6 3

96.1 .930 0.0118 .958 0.0113 8-9-6 4

97.5 .930 0.0108 .999 0.0000 8-10-6 5

97.0 .922 0.0122 .982 0.0199 8-11-6 6

96.2 .958 0.0208 .993 0.0034 8-4-2 1

99.6 .999 0.0000 .0986 0.0034 8-5-2 2

97.3 .992 0.0076 .992 0.0039 8-6-2 3

95.8 .948 0.0798 .991 0.0041 8-7-2 4

Bold parts show the best neural network structure for classification oils.

TA B L E  2  Artificial neural network 
results
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F I G U R E  4  Confusion matrix obtained for (a) shelf life, (b) detection of nonoxidized oils in six groups, and (c) classification of oxidized and 
nonoxidized oils
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ANN is based on trial and error to find the best network configura-
tion through varying the number of hidden layers and their neurons, 
activity functions, training algorithm, and the number of iterations 
in the training stage to lead to the intended output parameter. After 
training the ANN, its performance has to be investigated. The best 
network is the one with the highest R2 and the lowest RMSE:

where, Xpi and Xei are the predicted and observed values, respectively, 
‼

X shows the mean values, and n denotes the number of data.
The parameters of acidity, peroxide, and anisidine were mea-

sured using AOCS method. Equation (14) can be used to calculate 
the Totox index (Hai & Wang, 2006):

The statistical analysis was conducted using a completely ran-
domized factorial test.

3  | E XPERIMENTS AND DISCUSSIONS

3.1 | Chemical analysis of oil

After measurement by olfactory machine, a sample was meas-
ured by AOCS methods. The first step in identifying the primary 
stages of oxidation is to determine the peroxide index. The aver-
age peroxide for the oils on the first day was about 3 and after 
150 days, it reached 6.5. Because peroxide is not a reliable indica-
tor of oxidation, so the Totox index was used (Equation 14) (Billek 
et al., 1978).

Factorial experiment was performed with two factors of storage 
time and oil type. The type of oil (ONPD and OOPD) and storage 
time (150 days) and the tests were evaluated at 30-day intervals.

(12)R2 = 1 −

⎡⎢⎢⎢⎣

n�
1

⎛⎜⎜⎜⎝

Xpi − Xei

Xpi−
‼

X

⎞⎟⎟⎟⎠

2 ⎤⎥⎥⎥⎦

(13)RMSE =

√√√√1

n

n∑
1

(
Xpi − Xei

)2

(14)Totox = 2 × (PV) + AnV

TA B L E  3   Performance parameters of artificial neural network models

Topology
Days of storage—type 
of oil Accuracy Precision Sensitivity Specificity AUC

8-15-12 1-ONPD 0.995 1.000 0.950 1.000 0.975

1-OOPD 0.995 0.952 1.000 0.995 0.997

30-ONPD 1.000 1.000 1.000 1.000 1.000

30-OOPD 1.000 1.000 1.000 1.000 1.000

60-ONPD 0.986 0.870 1.000 0.984 0.992

60-OOPD 0.995 0.941 1.000 0.995 0.997

90-ONPD 0.995 0.944 1.000 0.995 0.997

90-OOPD 1.000 1.000 1.000 1.000 1.000

120-ONPD 0.990 0.895 1.000 0.990 0.995

120-OOPD 0.986 0.857 1.000 0.984 0.992

150-ONPD 0.990 0.895 1.000 0.990 0.995

150-OOPD 0.986 0.870 1.000 0.984 0.992

Average per class 0.993 0.935 0.995 0.993 0.994

8-10-6 1-ONPD 1.000 1.000 1.000 1.000 1.000

1-OOPD 1.000 1.000 1.000 1.000 1.000

30-ONPD 1.000 1.000 1.000 1.000 1.000

30-OOPD 1.000 1.000 1.000 1.000 1.000

60-ONPD 0.975 0.869 1.000 0.969 0.984

60-OOPD 0.975 1.000 0.850 1.000 0.925

Average per class 0.992 0.974 1.000 0.995 0.997

8-5-2 Nonoxidized 0.995 1 0.991 1 0.995

Oxidized 0.995 0.991 1 0.991 0.995

Average per class 0.996 0.996 0.996 0.996 0.996
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The results of analysis of variance of oils for Totox, peroxide, 
acidity, and anisidine indices are listed in Table 1. The effect of fac-
tor A (oil type) and factor B (time) as well as interaction (AB) was 
significant for Totox, acidity, and anisidine (at the p value of 1%), 
although factor A was not significant for the PV index. Figure  2 
shows the comparison of mean values using the Duncan Multirange 
Comparison Test at the 1% probability level.

According to the results obtained during the storage period in both 
types of oils (ONPD and OOPD), the amount of Totox has increased. 
According to Figure 2, the highest amount of acidity (0.6) was observed 
for the OOPD in two time periods (120 and 150 days), whereas the 
lowest amount for the ONPD (0.4) was observed in the storage period 
of 90 days. These results were consistent with the results obtained 
by Ngando et al. (2011). The amount of peroxide on the first day for 
the ONPD and OOPD was 3.36 and 3, respectively. According to the 
result obtained for the peroxide index, the effect of parameter A (oil 
type) was not significant at the level of 1% probability. The peroxide 
index is a function of oxidation time and increases with the opening of 
the oil door and the onset of oxidative reactions. The peroxide index 
has an ascending trend and has reached its maximum 6.6 (meqO2/kg) 
at the end of 150 days. According to Figure 2, the highest amount of 
peroxide (6.6) was observed in the ONPD on day 150, whereas the 
lowest amount of peroxide (3) was observed in the OOPD on the first 
day. Unlike the peroxide index, the anisidine shows the oxidation sec-
ondary products due to the degradation of hydroperoxides (Bonilla 
et al., 2012). According to Figure 2, the anisidine of the OOPD was 
higher than the ONPD. This index initially shows an increasing trend 
and then decreases slightly, which may be related to the complete de-
struction of hydroperoxides. The Totox index is an indicator for mea-
suring total oxidation, that is, the primary and secondary products of 
oxidation (Shahidi & Zhong, 2021). The highest index of Totox (22.3) 
was observed in the OOPD after 150 days, whereas the lowest index 
of Totox (12.63) was observed on the first day for the ONPD.

3.2 | Data exploratory analysis

The voltage response of the sensors was measured in three repli-
cated for 40 oil samples in a 150-day period at 1-month intervals. 
The mean of the sensor array response was then recorded for 240 
samples. An 8 × 240 feature matrix was considered for input of the 
data analysis methods. Nonsupervised methods such as PCA are the 
first step if data analysis. The data obtained from the eight sensors 
were reduced two-dimensionally using PCA. This method is suitable 
for the data analysis with no prior knowledge on the samples class, 
where the objective is to form a hypothesis not confirming that. 
Two-dimensional score diagrams of the shelf life of the oil samples 
are depicted in Figure 3. The two main components managed to de-
scribe 97% of the data set variance (PC1 = 91% and PC2 = 6%) in 
discriminating the shelf life of the oil samples. As can be observed, 
nonoxidized oils are on the left side of the score diagram, whereas 
the spoiled ones were placed on the right side. It can also be seen 

that the data for each month showed proper differences during the 
storage time. The results of the AOCS methods confirm the initial 
classification obtained in the score plot. Rasekh and Karami (2021a) 
reported similar results for predicting fruit fraud.

Accordingly, MQ136 and TGS2602 sensors possessed the high-
est significance in volatile pattern recognition and could be the best 
choice in the determination of the shelf life of the oil. On the other 
hand, TGS813, TGS2620, MQ9, and MQ135 had the lowest mean 
values and influence in sample discrimination.

3.3 | ANN result

Perceptron neural network was used for the classification of the 
shelf life of the oil. For this purpose, three different analyses were 
used to examine the shelf life (based on the storage time [150 days 
or 6 periods] for two types of oil [ONPD and OOPD]), differentiate 
the healthy oil from spoiled one, and investigate the healthy oils of 
both groups (ONPD and OOPD). For the input layer, according to 
the number of sensors, eight neurons were considered; and for the 
output layer, it was determined based on the type of the experiment 
(12, 2, and 6 neurons, respectively). Equations 7–11 were used to 
find the optimal neurons in the hidden layers. In this regard, the net-
work with the structure of 8-15-12 exhibited the highest accuracy. 
The network training was conducted by logarithmic sigmoid transfer 
function and learning method of Lunburg–Markorat. RMSE and R2 of 
the train and test data, as well as the correct classification rate of the 
best structure, are listed in Table 2.

According to the results, the network with the topology of 8-
15-12 exhibited the best performance with the lower train and test 
error and a higher coefficient of determination. To this end, the net-
work with the topology of 8-10-6 possessed the best performance in 
differentiating the nonoxidized oils in a way that its RMSE was 0.001 
and 0.01 for the training and test, respectively. Moreover, the men-
tioned topology resulted in R2 values of .99 and .93 for the train and 
test data, respectively. In another experiment to differentiate non-
oxidized from oxidized oils, the topology of 8-5-2 resulted in the best 
performance as it exhibited the highest accuracy for the train and 
test data. The obtained values were far higher than those reported 
by Ayari et al.  (2018a) for the detection of the oxidation in animal 
and vegetable oils. These results had also higher accuracy compared 
with the work of Yu et al. (2008) concerning green tea classification 
using back propagation error ANN based on the data provided by an 
E-nose. Rasekh and Karami (2021b) also reported similar results for 
predicting fruit fraud.

The confusion matrix and classification performance param-
eters are shown in Figure 4 and Table 3. Among 240 data for the 
determination of the shelf life, discrimination of the healthy oils 
with two types of oil (ONPD and OOPD), and detection of the 
oxidized oils from nonoxidized ones, the proposed method man-
aged to correctly allocate 224, 237, and 239 data in their corre-
sponding groups. As Table 3 suggests, the ANN method offered 
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high accuracy and sensitivity in the classification of the edible 
oils.

The results of this study are in agreement with the work of Wei 
et al.  (2009) who used an E-tongue to classify honey samples with 
different flower and geographical origins. Their results were then an-
alyzed by different pattern recognition techniques of PCA and ANN. 
They showed that ANN is the most effective feature extraction 
method in comparison with CA and PCA methods with a correction 
level of 95% (Wei et al., 2009). These results were also better than 
the other studies using ANN methods (Hai & Wang,  2006; Kiani 
et al., 2017; Singh et al., 2014).

4  | CONCLUSION

The oil durability studies were conducted under normal conditions 
for 150 days. These experiments were repeated each month using 
both the chemical method of AOCS and the proposed E-nose, which 
led to the following results:

•	 E-nose can be exploited for the shelf life and oxidation of the oil 
with satisfactory results.

•	 During the storage time of the oil samples, PCA and ANN meth-
ods succeeded in classifying the samples based on their storage 
time with high accuracy.

•	 The correlation between the measured and predicted smell pa-
rameters of the edible oil revealed high prediction performance 
based on the output signals of the E-nose.

Generally speaking, as a few studies have addressed the use of 
E-nose in the determination of the shelf life of oil, the results of this 
study indicate that E-nose, in combination with ANN, can be used to 
determine the shelf life of oil with satisfactory results.
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