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Abstract: In response to one of the most important challenges of the century, i.e., the estimation of 
the food demands of a growing population, advanced technologies have been employed in agri-
culture. The potato has the main contribution to people’s diet worldwide. Therefore, its different 
aspects are worth studying. The large number of potato varieties, lack of awareness about its new 
cultivars among farmers to cultivate, time-consuming and inaccurate process of identifying dif-
ferent potato cultivars, and the significance of identifying potato cultivars and other agricultural 
products (in every food industry process) all necessitate new, fast, and accurate methods. The aim 
of this study was to use an electronic nose, along with chemometrics methods, including PCA, 
LDA, and ANN as fast, inexpensive, and non-destructive methods for detecting different potato 
cultivars. In the present study, nine sensors with the best response to VOCs were adopted. VOCs 
sensors were used at various VOCs concentrations (1 to 10,000 ppm) to detect different gases. The 
results showed that a PCA with two main components, PC1 and PC2, described 92% of the total 
samples’ dataset variance. In addition, the accuracy of the LDA and ANN methods were 100 and 
96%, respectively. 
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1. Introduction 
The potato is an important food crop that grows throughout the world. It is consid-

ered an essential crop in developing and developed countries, contributing to the human 
diet as a source of carbohydrates, proteins, and vitamins. This crop is native to South 
America and originates from Peru. The potato is the fourth most important food supply 
of human societies after wheat, rice, and maize [1]. According to the UN Food and Ag-
riculture Organization statistics, the area under cultivation of the potato in Iran was 161 
thousand hectares in 2017, while the harvested crop was about 5.1 million tons [2]. 

Potatoes can be consumed in various food forms, fresh or processed, including fried 
potatoes, mashed potatoes, potato chips, and dried granules. There are over 50 potato 
cultivars in the world, the most important of which are: “Agria”, with a relatively high 
dry matter and resistance to various pests and diseases, is used in the French Fries’ food 
industry. “Arinda”, with a very high-yield and resistance to internal bruising; “Almera”, 
with a relatively high dry matter, is suitable for fresh eating. “Burren”, with a very 
high-yield, is very cost-effective for cultivation and has good resistance to diseases. “Pi-
casso”, such as the Bourne cultivar, has a high-yield and resistance to disease. “Jelly”, 
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with a very high-yield and resistance to diseases, has a very customer-friendly yellow 
color and flesh. “Rumba” has high-resistance against diseases and a very high-yield. 
“Satina” has a very high-yield and can be cultivated in different climates. “Satne” has a 
high resistance to pests. “Fontane”, with a very high-yield, is suitable for processing and 
the French Fries’ food industry. “Sprit”, with high-yield and quality, is a custom-
er-friendly cultivar. “Marfona” has a high-yield and is suitable for fresh eating. 

The nutritional and chemical composition of potato tubers varies with cultivars, 
storage, growing season, soil type, pre-harvest feeding, and the analysis methods 
adopted [3]. In general, potatoes contain 80–70% water, 16–24% starch, and very small 
amounts (4%) of protein, fat, anthocyanins, minerals, and so on. Although potatoes are 
rich in carbohydrates, they provide significant amounts of other nutrients, such as pro-
teins, minerals, and vitamins. Potato production is generally declining, despite an in-
crease in market demand for fresh crops [4,5]. The production and quality of the sweetest 
potatoes have decreased in recent years, due to a combination of various factors, in-
cluding mutations in viruses and other pathogens in potatoes [6]. Therefore, potatoes are 
faced with a variety of diseases. In addition, farmers have difficulty in classifying dif-
ferent types of plants, due to the lack of access to agricultural specialists to help to pro-
mote and educate agriculture. They cause a decrease in yield per hectare [7]. To cope 
with these problems, special methods have been introduced to farmers to identify and 
classify potato cultivars [8,9]. 

Traditional methods used for the determination of potato varieties were mostly 
based on morphological characteristics. However, the need for faster and better recogni-
tion methods was felt with the emergence of new crops [10–12]. Yet, the identification of 
different cultivars is currently accomplished by traditional and visual methods, including 
the observation of some characteristics of potato tubers, such as peel color, number of 
points in the sprouts, and, in some cases, looking at the flower color of the potato stems in 
the field. These methods are difficult and time-consuming tasks and are not error-free. 
One of the novels introduced methods in image processing techniques to identify plants 
based on their shape, texture, and color [13,14]. This is complemented by machine 
learning, which allows the machine to learn without careful planning. Since, and over the 
past decades, computer vision and machine learning for the identification of various 
diseases have been frequently used and studied. In addition, machine learning tech-
niques can be applied to classify images. In addition, neural networks can be useful, 
along with image processing. The neural network is a computational framework influ-
enced by biological neural processing. Neural networks perform useful calculations 
through the learning process. 

Protein electrophoresis can be useful when a simple procedure, independent of 
high-level laboratory facilities, is required. In some cases, this method can also be applied 
in quality control systems. However, the requirement of special laboratory conditions (to 
preserve the protein, as well as the high diversity of the potato protein itself) are limita-
tions for this method. DNA profiling: in methods that identify potato varieties through 
DNA, radioactivity labeling and the need for good DNA quality are among the limita-
tions of these methods. Among these, the olfactory machine has high efficiency in clas-
sifying cultivars. It is a system with a different structure and approach, relative to other 
methods (image processing, neural network, etc.); it allows for the classification and 
identification of cultivars, is flexible, and can be applied in most agricultural products 
because of their odor [15,16]. 

Przybył et al. [17] studied two potato cultivars, Vineta and Denar, using image 
processing and artificial neural network techniques and concluded that they are able to 
identify the cultivars. This research was conducted using 4 geometric features, 7 side 
factors, and 29 color-determining parameters, among which, 10 factors had the highest 
impact on the cultivars’ identification. The optimal state of the artificial neural network 
used to identify these two cultivars was 18-51-2. 
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Azizi et al. [18] conducted an investigation on 120 potatoes of 10 different cultivars 
using machine vision and image processing (via the MATLAB R2012 toolbox) to identify 
texture and shape parameters and cultivars. At first, potato cultivars were classified us-
ing the LDA method, with an obtained accuracy of 67%. This method also failed to iden-
tify the two cultivars Agria and Savalan and misclassified the two cultivars Fontaneh and 
Satina, as well. They also used ANN to classify potato cultivars, in which ANN had an 
accuracy of 82 and 100% with one and two hidden layer(s), respectively. It was found, in 
this study, that different types of potatoes can be identified and classified with a very 
high level of accuracy using the triple properties, namely, color, textural, and morpho-
logical characteristics extracted by the machine vision using a classifying nonlinear arti-
ficial neural network. The results show the effect of artificial intelligence, including ma-
chine vision, in identifying cultivars and horticultural products that can be widely used 
in the food industry to achieve automation goals. 

In another study, using neural networks and image processing on 5 sweet potato 
cultivars, researchers showed that this method is successful and could classify sweet 
potato cultivars with an accuracy of 100% [19]. 

Another study was conducted in order to grade potatoes of 5 different cultivars by 
their quality using a color vision machine. The researchers reported the accuracy of the 
LDA and MLF-NN models equal to 87 and 99%, respectively [20]. 

In another study, simple sequence repeats (SSR) markers were used on 34 potato 
cultivars grown in Canada to identify the cultivars. The results showed that the geno-
types for each tested item were completely consistent, except for 4 pairs of cultivars. The 
accuracy of this method was obtained at 88%. The researchers also noted that, using two 
methods (SSR and AFLP (Amplified Fragment Length Polymorphism)), some cases show 
consistent results in determining potato cultivars [21]. 

On the other hand, for several decades, studies on the application of different types 
of techniques for the detection of odor have been conducted. An electronic nose is a very 
useful device, used to determine the difference between the smell of even similar mate-
rials [22–24]. For this reason, the e-nose can be regarded as a quick and simple analytical 
tool; it is also useful for identifying potato cultivars and will be very useful for research-
ers to select and produce pure cultivars and for farmers to produce uniform and certified 
crops. Therefore, the aim of this study is to identify potato cultivars using the olfactory 
machine system. 

2. Materials and Methods 
2.1. Sample Preparation 

At first, samples of five different cultivars (Agria, Sprite, Sante, Marfona, and Jelly), 
were obtained from Ardabil Agricultural Research Center and kept at 4–10 °C. One day 
after cultivar preparation, data collection was performed. Data collection included 
chemical properties and cultivars’ identification using an electronic nose. 

2.2. Extraction of Carbohydrates 
The carbohydrate content of the samples was extracted using the equipment availa-

ble in the central laboratory of Mohaghegh Ardabili University. It was performed using 
the Schlegel method. Carbohydrate was extracted using 95% ethanol, based on the sul-
furic acid method from each sample. In this method, 0.200 g of the sample with 10 cc of 
95% ethanol was heated in a water bath at 80 °C for 1 h. 1 cc of 0.500% phenol and 5 cc of 
98% sulfuric acid were added to 1 cc of this sample. The value of absorption light by each 
sample from the Nanodrop spectrophotometer (Thermo ScientificTM NanoDropTM One C, 
Waltham, MA, USA) with a volume of 1000 microliters was read using a cuvette. The 
amount of extracted carbohydrates was obtained from the standard curve by micrograms 
per milliliter [25]. 
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The 100 mg/mL of glucose was prepared for the standard curve. Consecutive dilu-
tion of glucose was performed and dye development at 490 nm was controlled for dif-
ferent glucose concentrations. A total of 1 mL of distilled water was used as a blank. A 
standard curve was drawn and used to calculate the total concentration of carbohydrates. 

The standard curve had a determination coefficient of 0.995 and its relationship was 
obtained as y = 0.003x − 0.021. Data were collected in three replications for each sample, 
and the amount of absorption wavelength was obtained. Then, the carbohydrates content 
was calculated by placement of the wavelength, in relation to the standard curve. 

To obtain the carbohydrates’ content, the absorption wavelength number was 
placed in the relationship, y = 0.003x − 0.021 and the carbohydrates’ content was obtained 
by micrograms per milliliter; the values are shown in Table 1. 

Table 1. Carbohydrate values obtained for different potato cultivars. 

Variety 
Absorption Wavelength (nm) Carbohydrate Content (μg/mL) 

1 2 3 1 2 3 
Sprit 0.780 0.793 0.840 258 262 278 
Agria 0.492 0.543 0.573 165 181 191 
Jelly 0.675 0.714 0.761 223 236 252 
Sante 0.804 0.808 0.901 265 268 297 

Marfona 0.401 0.461 0.561 136 155 187 

2.3. Sugar Extraction 
The sugar content of each specimen was measured with three replications using a 

liquids’ refractometer, Model BPTR100 (Middle East System Control Co., Prisma Tech 
brand, Ardabil, Iran), available at Mohaghegh Ardabili University. For this, some water 
was extracted from each specimen, then it was poured into a micro-tube and placed in a 
refrigerated centrifuge (high-speed) (Model LISA France) at 1800 rpm for 2 min, follow-
ing deposition of the impurities, and was separated the pure liquid (pure potato juice). It 
was kept, to reach ambient temperature, and then was placed on a refractometer device 
and its sugar content was read by Brix. 

2.4. Electronic Nose Instrument 
In this research, an electronic nose made in the Department of Bio-system Engi-

neering of Mohaghegh Ardabili University was used (Figure 1a). Additionally, 9 Metal 
Oxide Semiconductor (MOS) sensors with low power consumption are used in this ap-
paratus. The sensor specifications are listed in Table 2 [22,26,27]. 

The first 2–4 potatoes from each cultivar were placed in the sample container (Figure 
1b) for 1 day to saturate the container with the odor. Then, the sample chamber was 
connected to the electronic nose instrument and data collection was performed. The data 
were collected by the olfactory machine in such a way that first clean air was passed 
through the sensor chamber for 100 s to remove other odors of the sensors. The odor 
(gases emitted from the specimen) was then sucked out of the specimen chamber by a 
pump for 100 s and then directed to the sensors. Finally, to prepare the sample for further 
data collection, clean air was injected into the sensor chamber for 100 s [15,16,28]. 
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Figure 1. Schematic of an artificial olfactory (e-nose) system, the components of this system consist of the following parts 
(listed in order and direction of airflow as follows). (a) Air filter (activated charcoal to remove ambient-air VOC hydro-
carbons), (b) sample headspace chamber, (c) solenoid air valves, (d) diaphragm pump, (e) e-nose sensor array chamber, 
(f) data acquisition recorder and wireless transmission card, and (g) personal computer (PC). Adapted from ref. [22]. 

Table 2. The sensor types, gas detection ranges, and known chemical sensitivity of tin oxide MOS 
sensors within the electronic nose sensor array. 

Row Sensor Name Detection Ranges (ppm) Main Applications (Gas Detector) 

1 MQ9 10–1000 and 100–10,000 CO and combustible gas 
2 MQ4 300–100 Urban gases and methane 
3 MQ135 10–10,000 Steam ammonia, benzene, sulfide 
4 MQ8 100–1000 Hydrogen 
5 TGS2620 50–5000 Alcohol, steam organic solvents 
6 MQ136 1–200 Sulfur dioxide (SO2) 
7 TGS813 500–10,000 CH4, C3H8, C4H10 
8 TGS822 50–5000 Steam organic solvents 
9 MQ3 10–300 Alcohol 

According to the above steps, the output voltage of the sensors was changed, due to 
exposure to various gases (potato odor), and their olfactory response was collected by 
data collection cards. The sensor signals were recorded and stored in the computer USB 
gate at 1 s intervals. A fractional method was used to correct the baseline, in which noise 
or possible deviations were eliminated and the sensor responses were normalized and 
dimensionless using the following equation [16,29]: 

)0(
)0()()(

s

ss
s X

XtX
tY

−
=  (1)

where, YS(t) is the normalized response, XS(0) is the baseline and XS(t) is the sensor re-
sponse. 

2.5. Statistical Analysis 
2.5.1. Analysis of Variance 

The contents of sugar and carbohydrates in five different potato cultivars were ob-
tained using a refractometer and Schlegel method, respectively. 
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The obtained values for sugar and carbohydrate content of five potato cultivars were 
analyzed using MSTATC software (Michigan State University, East Lansing, MI, USA). 
The statistical analyses were conducted using a completely randomized factorial test. The 
means were compared with Duncan’s multiple range test at 0.01 p-value level. 

2.5.2. Chemometrics and Machine Learning Modelling 
Chemometrics uses multivariate statistics to extract useful information from com-

plex analytical data. The chemometric used in this study began with principal component 
analysis (PCA) to discover the output response of the sensors and reduce the data di-
mension. In the next step, linear diagnostic analysis (LDA) and artificial neural network 
(ANN) were used to classify five potato cultivars. PCA is one of the most widely used 
methods to reduce statistical data. This method is an unsupervised technique used to 
explore and reduce the dimensions of a dataset. The analysis involves determining the 
variable components, which is a linear combination of many features studied [30]. A set 
of correlated variables becomes a new set of orthogonal variables called principal com-
ponents (PCs). Each principal component is a linear combination of all primary variables. 
LDA is a supervised method used to find the most distinctive Eigenvectors and maxim-
izes the ratio of the variance between and within the class and is able to classify two or 
more groups of samples [31]. Artificial neural network (ANN) is a computational model, 
based on the function and structure of biological neural networks. The information that 
flows through the network affects the structure of the ANN because the neural network 
changes or, in other words, learns, based on input and output. The common type of arti-
ficial neural network consists of three groups or layers: the first layer is connected to the 
hidden layer and they themselves are connected to the output layer. The activity of the 
input units represents the raw information that is transmitted to the network. The activ-
ity of each hidden unit is determined according to the activities of the input units and the 
weight on the connections between the input and the hidden units. Additionally, the 
behavior of the output units depends on the activity of the hidden units and the weights 
between the hidden units and the output. In this type of network, the hidden units are 
free to construct their own representations of the input. The weights between the hidden 
and input units are determined when each hidden unit is active; so by modifying these 
weights, a hidden unit can choose what it represents. One of the important applications 
of neural networks is pattern recognition. Pattern recognition can be implemented using 
a feed-forward neural network, trained in the same way. During training, the network is 
trained to relate the outputs to the input patterns. When a network is used, it detects the 
input pattern and tries to output the associated output pattern. The power of neural 
networks comes to life when a pattern that has no output associated with it, is given as an 
input. In this case, the network gives the output that corresponds to a taught input pat-
tern that is least different from the given pattern. According to the number of sensors, 
nine neurons were considered for the input layer. The hidden layer will be considered 
with the optimal number of neurons and five output neurons will be considered ac-
cording to the number of target output classes. Data were randomly selected for learning 
(60%), testing (20%), and validation (20%). The performance was calculated using the 
cross-entropy and a neuron trimming test was conducted to select the models with no 
under- or over-fitting, being three the most optimal number for the model (Figure 2) [32]. 
In addition, Unscrambler vers. 10.4 software (CAMO AS, Trondheim, Norway) was used 
for PCA and LDA analysis and Matlab® (vers. R2014a) (Mathworks, Inc., Natick, MA, 
USA) was used for ANN analysis. 
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Figure 2. Diagrams of the two-layer feedforward models with a tan-sigmoid function in the hidden 
layer and a Softmax function in the output layer for electronic nose inputs. Abbreviations: W: 
weights; b: bias. Adapted from ref. [32]. 

2.6. Model Evaluation Metrics 
The individual performance of models 1 and 2 was assessed by the confusion matrix 

and the receiver performance characteristic curve (ROC). Once validated, each model 
was exported as an executable command in Matlab®and challenged by a new testing 
dataset. Sensitivity, specificity, accuracy, and precision parameters were used to analyze 
the system performance [33, 34]: 
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in which TP (True Positive), TN (True Negative), FP (False Positive), and FN (False Neg-
ative) indicate, and all values are dimensionless. 

Accuracy represents the proportion of samples that are correctly classified. Recall 
(R) is defined as the ratio of the TP samples to the sum of the TP and FN samples. Preci-
sion (P) is defined as the ratio of the TP samples to the sum of the TP and FP samples. 

3. Results 
3.1. Results of ANOVA for Sugar and Carbohydrate Content of Potato Cultivars 

The results of analysis of variance (ANOVA) for sugar and carbohydrate contents of 
five different potato cultivars were significant at the level of 1%, the mean of squares 
values of sugar and carbohydrate were 2.198 and 8184.567, respectively, with coefficients 
of variation of 0.270 CV and 7.671 CV, respectively. 

The average sugar content in potato cultivars by Brix index (grams of sugar per 100 
g of solution) is shown in Figure 3a. With respect to the shape parameter, the Sprite cul-
tivar has the highest content of sugar (8.151). However, Agria and Jelly cultivars have the 
lowest amount of sugar content (6.180 and 6.122 Brix, respectively). 
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Figure 3. Result of Duncan mean comparison test for the (a) sugar content and (b) carbohydrate of 
potato cultivars (α = 0.010). 

In addition, the average potato carbohydrates’ content in potato cultivars can be 
seen in Figure 3b. According to the results, the highest carbohydrate content was ob-
served in Sprite, Sante, and Jelly cultivars equal to 277, 266, and 237 μg/mL, respectively. 
However, the least carbohydrate content was recorded for Marfona and Agria cultivars. 
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3.2. E-Nose Result 
The experiments were performed to identify five different potato cultivars. Radar 

diagrams were used to observe the differences in patterns (fingerprints) between differ-
ent potato cultivars. The average output data of electronic nose sensors, during 100 s of 
measurements, are plotted as a radar diagram following the normalization using Equa-
tion (1) (Figure 4). Using this diagram, it is possible to visualize the difference between 
the response patterns of the sensors to the odor of each potato cultivar. As can be seen 
from Figure 3, there is considerable similarity in the fingerprints of different potato cul-
tivars. Except for the Jelly cultivar, whose pattern is somewhat different from other cul-
tivars, all other cultivars have almost the same pattern but are varied in values. Accord-
ingly, the highest odor is related to Jelly, Sprite, and Sante cultivars. These three cultivars 
also have the highest carbohydrate content. It can probably be said that the reason for the 
greater odor of these three cultivars is due to their higher carbohydrate content. 

 
Figure 4. Radar raw fingerprint chart (sensor intensities) of the VOCs potato cultivars. 

The scores diagram (Figure 5) shows the total variance of the data equal to PC-1 
(76%) and PC-2 (16%), respectively, with the first two principal components, constitute 
92% of the total variance of the normalized data. When the total variance is above 60%, it 
means that the first two PCs are sufficient to explain the total variance of the dataset. 
According to the figure, the three cultivars Gelly, Sprite, and Sante, with higher carbo-
hydrate contents, can be seen on the right side of the score diagram, and the two culti-
vars, Marfona and Agria, can be seen on the left side of this diagram. It can be assumed 
that the e-Nose has a good response to the odor of carbohydrates, and it may be possible 
to distinguish different potato cultivars only based on their carbohydrate contents. It in-
dicates the high accuracy of the electronic nose in detecting the odor of different prod-
ucts. 
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Figure 5. Two-dimensional PCA plot to identify five different potato cultivars with data collected 
using an electronic nose. 

In the correlation loadings plot, the relations between all variables can be shown. 
The loading diagram (Figure 6) shows the relative contribution of the sensors for each 
principal component. The inner ellipse shows 50%, and the outer ellipse shows 100% of 
the variance of total data. The higher the loading coefficient of the sensor, the higher the 
contribution of that sensor in detection and classification. Therefore, it can be said that 
sensors on the outer circle has a greater role in data classification. 

 
Figure 6. Loading plot for PCA analysis to identify five different potato cultivars. Abbreviations: 
(1) MQ9, (2) MQ4, (3) MQ135, (4) MQ8, (5) TGS2620, (6) MQ136, (7) TGS813, (8) TGS822, and (9) 
MQ3. 

3.3. LDA and ANN Results 
LDA and ANN methods were used to recognize the potato cultivars, based on sen-

sor output response. Unlike the PCA method, the LDA method is able to extract multiple 
sensor information to optimize the resolution between classes. Therefore, this method 
was used to detect five potato cultivars, based on the output response of the sensors. The 
result of the identification of cultivars was obtained 100% (Figure 7). 
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Figure 7. LDA analysis to identify five different potato cultivars. 

The lowest value of cross-entropy obtained during the training period was 2.1%. A 
cross-entropy error of less than 1% was proposed to serve as a stopping condition in 
training the e-nose. In this study, it was stated that if the %CE training was more than 1%, 
the system would be re-trained and more samples would be added, until the required 
cross-entropy error is reached. Table 3 shows the confusion matrix for the classification of 
five potato cultivars. 

In the confusion matrix, the rows correspond to the actual classes and the columns 
to the identified classes. Oblique cells correspond to correct classified observations, and 
non-oblique cells correspond to incorrect classified observations. Table 3 shows the con-
fusion matrix results from the recognition of potato cultivars using LDA and ANN 
methods. Statistical results of the artificial neural network classification models, devel-
oped using the e-nose outputs as inputs for the classification of five varieties of potatoes 
are shown in Table 4. 

The oblique cells of the confusion matrix were composed of the correct number and 
percentage of classification. For example, the first cell corresponding to the Agria cultivar 
was correctly classified with 20% of all 75 datasets observed. Since there was no case of 
incorrect classification in the LDA method, the classification accuracy was 100%. 

Furthermore, the value of the receiver operating characteristic (ROC) was very sen-
sitive for the classification of the five potato cultivars (true positive rate; 0.960). 
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Table 3. Confusion matrix to identify five different potato cultivars using LDA and ANN methods. 

Model Variety Agria Sprit Jelly Sante Marafona  

LDA 

Agria 15 
20% 

0 
0% 

0 
0% 

0 
0% 

0 
0% 

100% 
0% 

Sprit 0 
0% 

15 
20% 

0 
0% 

0 
00% 

0 
0% 

100% 
0% 

Jelly 0 
0% 

0 
0% 

15 
20% 

0 
0% 

0 
0% 

100% 
0% 

Sante 0 
0% 

0 
0% 

0 
0% 

15 
20% 

0 
0% 

100% 
0% 

Marafona 0 
0% 

0 
0% 

0 
0% 

0 
0% 

15 
20% 

100% 
0% 

  
100% 

0% 
100% 

0% 
100% 
0% 

100% 
0% 

100% 
0% 

100% 
0% 

ANN 

Agria 
12 

16% 
0 

0% 
0 

0% 
0 

0% 
0 

0% 
100% 
0% 

Sprit 
0 

0% 
15 

20% 
0 

0% 
0 

0% 
0 

0% 
100% 
0% 

Jelly 0 
0% 

0 
0% 

15 
20% 

0 
0% 

0 
0% 

100% 
0% 

Sante 3 
4% 

0 
0% 

0 
0% 

15 
20% 

0 
0% 

83.333% 
16.667% 

Marafona 
0 

0% 
0 

0% 
0 

0% 
0 

0% 
15 

20% 
100% 
0% 

  80% 
20% 

100% 
0% 

100% 
0% 

100% 
0% 

100% 
0% 

96% 
4% 

Table 4. Statistical results of the artificial neural network classification models, developed using the 
e-nose outputs as inputs for the classification of five varieties of potatoes. Abbreviations: CE: means 
Cross entropy. 

Stage Samples Accuracy Error CE 
Training 45 97.801 2.202 0.455 

validation 15 93.324 6.711 0.902 
Testing 15 93.314 6.736 0.917 
Overall 75 96.001 4.000 0.065 

Table 5 shows the testing results for classifiers challenged with a new dataset of 
potato samples; statistical results were reported using Equations (2)–(7). Among the 
models tested, both linear and quadratic LDA classifiers provided the best performance, 
including recall and specificity. The classification recalls of these five categories (with the 
ANN and LDA method) were 96 and 100%, respectively, while their precision percent-
ages were 96.666 and 100%, respectively. Using the precision and recall percentage val-
ues, shown in the gray cells in the last row and rightmost column of the matrix, respec-
tively, the computed F-measure of these four categories were 95.923%, and 100%, re-
spectively. Despite the fact that Precision and Recall are valid metrics in their own right, 
one can be optimized at the expense of the other; therefore, the F-Measure was used. In 
the case of the five-potato cultivar classification prediction, in most experimental proofs, 
the e-nose was able to correctly correlate the input data with the actual input concentra-
tions. The results show that the overall accuracy of the electronic nose, when using it in 
the classification of five potato cultivars, was very satisfactory. 
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Table 5. Performance parameters of LDA and ANN models. 

Models Accuracy Precision Recall Specificity AUC Fscore 
LDA 1.000 1.000 1.000 1.000 1.000 1.000 
ANN 0.984 0.966 0.960 0.990 0.978 0.959 

4. Discussion 
According to the results, the highest carbohydrate content was observed in Sprite, 

Sante, and Jelly cultivars, equal to 277, 266, and 237 μg/mL, respectively; the Sprite cul-
tivar had the highest content of sugar (8.151). The difference in the sugar content of dif-
ferent cultivars is due to the differences in the hydrolysis of starch (the main component 
of potato tubers), which occurs as a result of the crop respiration; the lower the starch 
content in a cultivar, the less sugar has the cultivar. It is important to note that the 
chemical composition depends on the potato cultivar, soil, climate, and agronomic fac-
tors. In general, it can be said that potatoes with more sugar content are suitable for the 
chips industry and potatoes with medium sugar content are suitable for frying [35]. 

Gumul et al. [36] measured the sugar content for five different potato cultivars. They 
also stated that the lower the sugar content of different potato cultivars, the lower the 
quality of the product, because at high temperatures, sugars react with Maillard to form 
potential substances that are dangerous to human health. This reaction is also observed 
during the thermal processing of food [23]. Rutolo et al. [37] studied the detection of po-
tato soft rot caused by pectobacterium carotovorum using an array of low-cost gas sen-
sors. Their goal was to investigate the potential of a set of low-cost gas sensors to diag-
nose the disease. In laboratory conditions, they analyzed 80 potatoes with and without 
soft rot by an array of 11 different gas sensors. The results showed that 100% detection 
accuracy can be achieved with only three sensors. 

Rasekh and Karami [26,27] reported similar results for predicting fruit juice fraud. In 
addition, the results obtained in this study were far higher than the values reported by 
Ayari et al. [38] for the detection of oxidation in animal and herbal oils. These results 
were also more accurate than the research by Yu et al. [39] on the classification of green 
tea, based on data provided by electronic nose. Rusinek et al. [40] described the differ-
ences in the quality of stored rapeseed, during which there was a loss of material quality. 
The electronic nose device has been successfully used to determine differences in coffee 
grades, based on aroma studies [32,41]. In these works, advanced statistical methods 
were used to describe the relationships between the obtained parameters. Similar results 
have been reported by other researchers [42–45]. 

5. Conclusions 
This paper reports on the use of MOS gas sensors analysis equipment to detect and 

investigate odors associated with potato cultivars. Given that there is currently no cost 
effective, non-destructive, reliable, and practical approach for the classification and 
identification of potato cultivars, this method has the potential to be used as a fast and 
non-destructive method to identify different potato cultivars. Using this method for 
identifying potato cultivars will be very useful for researchers to select and produce pure 
cultivars and for farmers to produce uniform and certified crops. 

The large number of potato varieties, lack of awareness about its new cultivars 
among farmers to cultivate, time-consuming and inaccurate process of identifying dif-
ferent potato cultivars, and the significance of identifying potato cultivars and other ag-
ricultural products (in every food industry process) all necessitate new, fast, and accurate 
methods. It will be very useful for researchers to select and produce pure cultivars and 
for farmers to produce uniform and certified crops. Therefore, the results of this study 
can be effective in the rapid identification of potato cultivars. 
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