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Abstract: The recent development of MAU-9 electronic sensory methods, based on artificial olfac-
tion detection of volatile emissions using an experimental metal oxide semiconductor (MOS)-type
electronic-nose (e-nose) device, have provided novel means for the effective discovery of adulterated
and counterfeit essential oil-based plant products sold in worldwide commercial markets. These
new methods have the potential of facilitating enforcement of regulatory quality assurance (QA) for
authentication of plant product genuineness and quality through rapid evaluation by volatile (aroma)
emissions. The MAU-9 e-nose system was further evaluated using performance-analysis methods to
determine ways for improving on overall system operation and effectiveness in discriminating and
classifying volatile essential oils derived from fruit and herbal edible plants. Individual MOS-sensor
components in the e-nose sensor array were performance tested for their effectiveness in contributing
to discriminations of volatile organic compounds (VOCs) analyzed in headspace from purified essen-
tial oils using artificial neural network (ANN) classification. Two additional statistical data-analysis
methods, including principal regression (PR) and partial least squares (PLS), were also compared. All
statistical methods tested effectively classified essential oils with high accuracy. Aroma classification
with PLS method using 2 optimal MOS sensors yielded much higher accuracy than using all nine
sensors. The accuracy of 2-group and 6-group classifications of essentials oils by ANN was 100% and
98.9%, respectively.

Keywords: artificial neural networks; electronic nose; essential oils; partial least square (PLS); principal
regression (PR); product adulteration testing; quality control; volatile organic compounds (VOCs)

1. Introduction

Electronic-nose (e-nose) devices, used in the food industry for quality control (QC) of
animal and plant-based products, generally consist of an array of electrochemical sensors
used in combination with machine-learning methods, such as through artificial neural
networks (ANN), pattern-recognition algorithms, and various statistical data-evaluation
systems collectively capable of detecting aroma emissions from organic food sources [1,2].
E-nose devices usually contain an array of non-specific, cross-reactive chemical sensors
that have been used to detect complex food volatiles, consisting of unique combinations
of volatile organic compounds (VOCs), and provide specific chemical, aroma signature
patterns (smellprints) representative of the VOC-emissions being analyzed from various
food sources [3–5].
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Advances in electronic aroma detection (EAD) technologies have led to rapid prolifer-
ation in the use of artificial-intelligence (AI) devices, such as e-nose devices, as rapid and
non-invasive detection tools [3,6]. Some important recent developments of EAD technolo-
gies in the food industry include applications for improving food shelf-life, freshness, and
authenticity or adulteration quality assessments [7]. E-nose devices are particularly well
suited for detection and analysis of VOCs [8], and these instruments have a long history of
effective use in numerous industries, including food quality and safety [9], environmental
protection [10], agriculture [11–14], human health [15], and biomedical applications [16].

The capabilities of e-nose technologies to provide fast, reliable, and sensitive detection
of food-quality characteristics are increasingly important for the discovery of counterfeit
and adulterated foods to facilitate the enforcement of regulatory controls. The rapid detec-
tion of counterfeit and toxin-contaminated food products allows for the implementation
of early preemptive measures to preclude economic losses or harm to consumers before
problems arise [17]. The development of e-nose gas-sensor array technologies are effec-
tive analytical tools for assessing food quality and detecting distinct mixtures of volatile
emissions from food products [8,13].

Many challenging questions arise in relation to e-nose performance enhancement,
including how to improve on instrument sample-classification rates, detection and recovery
speed, and predictive accuracy [18]. Each unique EAD system has its own advantages and
disadvantages affecting efforts to improve on machine performance. However, there are
also numerous instrument-independent variables that exists for increasing VOC detection
selectivity, sensitivity, operating range, as well as response and recovery times. These
factors affect sample classification due to sample air relative humidity, temperature, sensor
signal drift, and other factors [19].

The instrument output signal-to-noise ratio (S/N) and individual sensor sensitivity are
fundamental features of e-nose sensor arrays. These characteristics are largely determined
by the type of sensor operational technology utilized. The types and number of sensors
most beneficial for inclusion in an e-nose sensor array is dependent on the chemical nature
of the sample types to be analyzed [8]. Optimal sensors selected for effective sample
discrimination must usually be empirically determined in practice. Verification of the most
effective sensor number and combinations tested for a sensor array, producing the best
classification performance, may be achieved using statistical sample-classification models
with the least possible variables, leading to a higher ratio of data points to variables [19,20].

Electronic noses consist of gas-sensing systems designed to measure and analyze
differences in VOC emissions from different sample types, having unique aroma char-
acteristics. Recent advances in new data-processing algorithms and techniques, such as
feature extraction and sensor array component analyses, provide more useful informa-
tion to facilitate and improve sample discriminations. Feature selection is a means for
removing redundant sensors that add noise (information not useful for classifications or
discriminations) within the instrument sensory outputs [20].

Various statistical techniques, such as Partial Least Square (PLS) and Principal Re-
gression (PR) have been used to select optimal sensors based on specific features and
classification types. These techniques reduce the potential cost associated with new sensor
developments to solve complex olfactory problems and create application-specific sensor
arrays [13]. The optimization of e-nose sensor arrays, by the selection of appropriate
high-performing sensors (as a subset of the original sensor array) that provide optimal dis-
criminations, have been extensively reported [21–27]. Some studies [28–32] have reported
the possibility of odor detection, using data collected by only one or a few sensors.

The research presented here is the result of a follow-up study to further analyze
and improve on the performance of the experimental MOS e-nose system (the MAU-9),
recently evaluated for its capabilities of classifying and identifying purified essential oils
from herbal and fruit sources [33]. The purposes of this study were to: (1) evaluate the
performance of individual sensors in the MAU-9 e-nose sensor array for effectiveness of
contributions to discrimination of purified plant essential oils based on VOC emissions,
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(2) compare the usefulness of two statistical analysis methods, PR and PLS for evaluating
discriminations between essential oils based on MAU-9 e-nose data, and (3) examine the
performance of artificial neural network (ANN) learning and classification methods for
e-nose discriminations based on purified essential oil VOC emissions.

2. Materials and Methods
2.1. Essential Oil Samples

Six different essential oils (EOs) including tarragon oil from tarragon (Artemisia dracun-
culus) leaves, thyme oil from thyme (Thymus vulgaris) leaves, mint oil from mint (Mentha
arvensis) leaves, lemon oil from lemon (Citrus limon) fruit, orange oil from orange (Citrus
sinensis) fruit, and mango oil from mango (Mangifera indica) fruit were used in this study.
The essential oils were selected and purchased from a commercial source (Barij Essence
Pharmaceutical Company, Tehran, Iran). The samples were extracted by steam, so that
the essential oils were composed of pure and concentrated oils in liquid form and did not
contain organic solvents in them [33].

2.2. Electronic Nose Instrument

An olfactory machine (MAU-9 electronic-nose system) equipped with 9 metal oxide
sensors (MOS) was used for the experiments. The names of the sensors (in order, with
primary VOCs detected) are as follows: MQ9 (carbon monoxide and combustible gases),
MQ4 (urban gases and methane), MQ135 (ammonia, benzene, sulfides), MQ8 (hydrogen),
TGS2620 (alcohols, organic solvents), MQ136 (sulfur dioxide), TGS813 (aliphatic alkanes),
TGS822 (organic solvents), and MQ3 (alcohols). This device was developed by the Depart-
ment of Biosystems Engineering of Mohaghegh Ardabili University, Ardabil, Iran [33,34].
The components of this system consist of the following parts, indicated in the order of
airflow from first coming into the e-nose system until exit as exhaust gas. First, the ambient
air enters the air filter (activated-charcoal carbon to remove VOC hydrocarbons in the
ambient air), then enters the sample chamber and goes through air vents, controlled by
electronic valves, and propelled by the suction diaphragm pump into the chamber of
the electronic aroma sensor array containing the nine responsive sensors. A schematic
representation and photograph of the MAU-9 e-nose system is provided in Figure 1. The
volume of the sensor chamber containing the sensor array was 1414 cm3. The inlet flow into
the sensor chamber was 1.5 L per minute and the sampling chamber volume was 50 cm3.
Sensors within the sensor array respond differently to sample aromas (VOC emissions)
from different volatile sample types. The output response of the sensors is saved inside the
PC by the data recorder and a wireless transmission card.

The MAU-9 MOS e-nose worked as a multisensory detector to sense VOC emissions
from purified EOs of different plant species by measuring changes in electrical conductivity
of individual sensors caused by a signal response to adsorption of different chemical classes
of VOCs to the surface sensor coatings due to interactions between the semiconductor and
analyte gas molecules. The changes in electrical conductivity are received by a transducer
that converts the analog signal from the sensor array to digital values from each sensor. All
detailed experimental methods and system components utilized for operating all phases
of chemical analyses using the MAU-9 e-nose were described previously [33]. The room
temperature was controlled at (20 ± 0.5 ◦C) during sample preparation and detection to
help minimize changes in carrier input-air relative humidity prior to being filtered by the
activated-charcoal carbon.

The sensor output signals from all nine sensors in the MAU-9 MOS e-nose sensor
array constituted a full multisensor-array output response, commonly referred to as an
aroma signature pattern or smellprint. The unique aroma signatures (smellprint patterns),
resulting from sensor-array output responses to individual aroma VOC-emissions of the
six purified and concentrated herb and fruit essential oil samples (recorded previously),
are presented in Figure A1 (Appendix A).
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Figure 1. Schematic and photograph of an artificial olfactory (e-nose) system, arranged in tandem, 
for introduction of essential oil VOCs, used for gas-sample analysis. The components of this system 
consist of the following parts (listed in order and direction of air flow as follows). Ambient air first 
enters (a) air filter (activated charcoal to remove ambient-air VOC hydrocarbons), then yellow line 
to (b) sample headspace chamber, and (c) solenoid air valves (1–3), then (d) diaphragm pump, 
(green line) to (e) e-nose sensor array chamber, (f) data acquisition recorder and wireless transmis-
sion card, (g) personal computer (PC) and (h), air outlet (red line) from sensor array chamber (for 
exhaust gases). Filtered air from air filter (blue line) alternatively passes to the e-nose sensor array 
chamber (via Solenoid air valve) during air-cleanse purges between samples. 
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The process of data acquisition, derived from the MAU-9 e-nose system, was divided into 
three phases, including baseline establishment, sample air aroma injection and purifica-
tion. The responses of the MOS sensors were recorded and graphed based on voltage var-
iation (∆V) vs. time. Sensor responses were normalized relative to their baseline for pur-
poses of thrust compensation, contrast enhancement, and scaling using the fraction 
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Figure 1. Schematic and photograph of an artificial olfactory (e-nose) system, arranged in tandem, for introduction of
essential oil VOCs, used for gas-sample analysis. The components of this system consist of the following parts (listed in order
and direction of air flow as follows). Ambient air first enters (a) air filter (activated charcoal to remove ambient-air VOC
hydrocarbons), then yellow line to (b) sample headspace chamber, and (c) solenoid air valves (1–3), then (d) diaphragm
pump, (green line) to (e) e-nose sensor array chamber, (f) data acquisition recorder and wireless transmission card,
(g) personal computer (PC) and (h), air outlet (red line) from sensor array chamber (for exhaust gases). Filtered air from air
filter (blue line) alternatively passes to the e-nose sensor array chamber (via Solenoid air valve) during air-cleanse purges
between samples.

2.3. Data Analysis

Several statistical methods, including Partial Least Square, Principal Regression Model,
and Artificial Neural Networks (ANN) learning and classification methods, were used
to analyze and interpret MAU-9 e-nose sensor output data obtained in this study. A
complete list of statistical methods and algorithms utilized and mentioned in this study
are defined, along with common-use acronyms, in alphabetical order within Appendix B.
The process of data acquisition, derived from the MAU-9 e-nose system, was divided into
three phases, including baseline establishment, sample air aroma injection and purification.
The responses of the MOS sensors were recorded and graphed based on voltage variation
(∆V) vs. time. Sensor responses were normalized relative to their baseline for purposes
of thrust compensation, contrast enhancement, and scaling using the fraction method, as
described previously by Karami et al. [34], and expressed by Equation 1:

Ys(t) =
Xs(t)− Xs(0)

Xs(0)
(1)

in which Ys (t), Xs (0), and Xs (t) indicate the normalized sensor response, the baseline,
and the raw unprocessed sensor response, respectively. The details of run parameters and
procedures for the data-acquisition phases of this e-nose system are given in the following
subsections.

2.3.1. Statistical Methods

The partial least squares (PLS) method is a multivariate statistical analysis method that
has been extensively used in research fields involving fruits and vegetables. This method
can better summarize the information of independent variables and explain dependent
variables by extracting effective comprehensive variables [35,36]. PLS can overcome the
problem of multivariate correlation problems resulting from the interaction between inde-
pendent variables, thus eliminating interference factors to a large extent and improving the
accuracy of prediction. Besides helping to overcome correlation problems, using PLS also
helps emphasize model performance by the interpretation and prediction of independent
variables, relative to dependent variables, when selecting feature vectors, eliminating the
result of regression noise, and establish a model with a minimum number of variables [13].
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Principal regression (PR) is a type of linear regression analysis based on the principal
component analysis (PCA) method. More precisely, PR is used to estimate unknown
regression coefficients in a standard linear regression model. Principal regression can lead
to the efficient prediction of results based on the assumed model by properly selecting the
principal components used for regression [37].

2.3.2. ANN Methods

The effective use of ANN as a classification method, based on powerful machine
learning, is particularly useful due to its nonlinear mapping capabilities. Different types
of ANNs, such as multilayer perceptron (MLP), learning vector quantization (LVQ), and
Kohonen networks, have been used to classify e-nose data [14]. ANN classification has
learning capabilities (for improving sample discriminations) because it is comprised of
interconnected layers of artificial neurons that carry out classifications by tuning the weight
and bias of the connections between neurons. The neuron pattern structure, the learning
process and the performance of nerve cell activation determines ANN performance [15].
In the ANN learning phase, both the input and the corresponding target (output) are
required. The weight of the connections is tuned based on the comparison of the output
and the target. This learning is repeated continuously until the outputs of network meet
the termination criteria. Normally, transfer functions for learning ANNs include sigmoid
function, step function, linear composition, and rectifier. ANN performance depends on
many factors, including the number of learning pairs, the ANN structure, the choice of
transfer and activation function, and the termination criteria.

A neural network can be used to effectively predict unknown samples based on the
response of the sensor from the machine olfaction system. Machine olfaction was used to
classify the essential oils based on the obtained sensor responses. The accuracy of the ANN
model can be estimated based on the root mean square error (RMSE) and the value of the
coefficient of determination (R2).

3. Results
3.1. Electronic-Nose Sensor-Component Analysis

The average of the main response data generated by nine machine olfaction sensors
is collected and converted into radar graphs, as shown in Figure 2. All sensors make a
response when exposed to the aroma VOC-emissions of the samples, where the lowest
response is related to the smell of fruit samples, and the smell of essential oils of medicinal
plants has the highest response.

Sensors MQ135 and TGS813 were the strongest and most effective in the classification
of different types of essential oils. Knowing the response of each sensor to the VOCs of
essential oil samples can help determine the various qualitative characteristics of essential
oils. Accordingly, one can choose the most important and effective sensors (with maximum
responses to essential oil volatiles) among the sensors selected to be included within the
sensor array of the e-nose. The selection of sensors with the strongest responses help to
reduce the response time of the system. However, access to the most important sensors
can play a significant role in the data processing stage because additional variables in
data sometimes can lead to problems such as over analysis of the data. Sensors with poor
selectivity adversely affect the discriminating power of the sensor array. Knowledge of the
discrimination power and performance of sensor array components can facilitate decision
making for the selection of the most suitable sensors. The selected nine-sensor array was
previously effective for the olfaction-based qualitative classification of fruit juice quality
and essential oils from herbs and fruits and could be used to construct an optimal or
improved electronic-nose system [33,38].

The MOS gas sensors TGS813 and MQ135 had the highest sensor intensity responses
to essential oil volatiles (VOCs), whereas the lowest sensor intensity responses to VOCs
were recorded for sensors MQ3, MQ4, MQ9. Both TGS813 and MQ135 sensors showed high
sensitivity to different VOCs (Figure 3). The variation in sensor responses (to individual
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essential oil sample replications) was greatest, with the two sensors (TGS813 and MQ135)
having the strongest sensor responses.
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Figure 3. Example of MAU-9 e-nose sensor array output response (+/− 1-standard deviation), indicated by individual
sensor responses to essential oil sample VOC emissions in headspace, to form a bar graph smellprint pattern.

3.2. Partial Least Squares and Principal Regression Analyses

The relationship between electronic nasal signals and essential oil classification was
described by PLS and PR models. PLS and PR was used to predict the classification of
essential oils. That is, the classification was analyzed based on the type of essential oil, i.e.,
two-group classification and six-group classification. The performance of PLS and PRM
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models for classification prediction in terms of R2 and RMSE is shown in Table 1. The
highest accuracies, obtained by the PR method (for 2-group classification), for calibration
and validation data were 0.977 and 0.965, respectively. The lowest accuracies obtained
by the PLS method (for six-group classification) for calibration and validation data were
0.945 and 0.938, respectively. Both PRM and PLS methods showed almost similar and
acceptable results for predicting correct classification of essential oils through calibration of
machine data.

Table 1. Results of principal regression and partial least square models for sample classification prediction based on e-nose
output 2.

Sample
Classification Model 1

R 2 RMSE Offset

Calibration Validation Calibration Validation Calibration Validation

2-group PR 0.977 0.965 1.085 1.122 1.975 2.252
PLS 0.956 0.945 1.005 1.215 1.617 2.325

6-group PR 0.967 0.953 1.968 2.138 2.083 2.694
PLS 0.945 0.938 2.036 2.562 1.995 2.564

1 Statistical analysis model abbreviations: PR = principal regression; PLS = partial least square. 2 Model output statistical value abbreviations:
R2 = coefficient of determination; RMSE = root mean square error.

Calibration data provide indications of how close data points of known samples were
to established regression line models, developed using PR and PLS statistical methods.
Similarly, validation data provide a measure of how data points from unknown data
(sample unknowns) approximate the same classification regression models using each
of the two statistical methods. Calibration data are usually more highly correlated with
regression models than validation data because the former are based on data from which
the model was derived. However, if validation data are only slightly less correlated
than calibration data, this indicates that the regression model is an effective estimator or
predictor of accurate sample-type classifications based on the subsequent analysis of sample
unknowns. If calibration and validation data are not comparable in model correlations, this
suggests that the model is not effective or accurate as a predictor for sample classifications.

Table 2 shows the regression models obtained from PR and PLS methods for classifying
essential oils. The models are in accordance with Equation (2), in which Y indicates the
predicted values (classification), B0 are the equation constant coefficients, S1 to S9 indicate
the main components, and (c1 to c6) indicate the coefficients of each predictor variable
(sensor signal response).

Y = B0 + c1S1 + c2S2 + c3S3 + c4S4 + c5S5 + c6S6 + c7S7 + c8S8 + c9S9 (2)

Table 2. The regression coefficients estimated by principal regression and partial least square models.

Coefficients of Predictor Variables 3 (for Individual MOS Sensors in MAU-9 Sensor Array)

Sample
Classification Model 1 B0

2 MQ9
c1

MQ4
c2

MQ135
c3

MQ8
c4

TGS2620
c5

MQ136
c6

TGS813
c7

TGS822
c8

MQ3
c9

2-group PR 0.022 −10.3 −4.8 3.24 −11.7 −14.7 −14.9 −3.5 −12.1 −13.6
PLS 0.092 9.67 4.3 −2.78 12.3 14.3 9.3 3.3 −4.7 1.24

6-group PR 0.019 1.68 10 10.9 −21.6 −8.7 4.1 1.87 −20.9 16.7
PLS 0.045 1.57 17.6 11.7 −12.7 10.2 5.80 1.88 −11.8 −7.50

1 Statistical analysis model abbreviations: PR = principal regression; PLS = partial least square. 2 Equation constant coefficients: B0 values.
3 Sensor-output variables: MQ# and TGS# = sensor names; c# = predictor variable coefficients.

Due to the different response power of MOS sensors used to classify different samples
of essential oils in this system, by selecting the most effective sensors to reduce the cost of
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making the olfactory machine, reduce the amount of input data, use the minimum number
of sensors and class accuracy increased the rating.

The response power of the sensors to different samples of essential oil was evaluated
using PRM method. The results PRM analysis and selection of the most effective sensors
from the studied gas sensors are summarized in Table 3. Values of coefficient of determina-
tion (R2-values) were examined to determine the most effective sensors. This information
was useful for selecting specific sensors for possible removal including sensors with R2

values smaller than or equal to 0.6 because the response of the relevant sensor has no direct
or acceptable relationship with the change in the type of essential oils. Low R2 values
and high RMSE values indicate that individual sensors are not contributing to effective
discriminations of essential oil sample types.

Table 3. Principal-regression model analysis results for individual sensors of the MAU-9 sensor array.

Sensor No. Sensor Name R2
val R2

cal RMSEval RMSEcal
Sample Discrimination 1

(SD) Contribution

1 MQ-9 0.891 0.893 0.1122 0.1257 High
2 MQ4 0.525 0.527 0.5425 0.5469 Low
3 MQ135 0.999 0.999 0.0050 0.0056 Very high
4 MQ8 0.744 0.746 0.1235 0.1239 Moderate
5 TGS2620 0.854 0.855 0.1853 0.1893 High
6 MQ-136 0.855 0.856 0.1201 0.1205 High
7 TGS813 0.999 0.999 0.0050 0.0053 Very high
8 TGS822 0.855 0.856 0.1349 0.1359 High
9 MQ3 0.701 0.700 0.1920 0.1934 Moderate

Principal-regression model output statistical abbreviations: R2 = coefficient of determination; RMSE = root mean square error; val = valida-
tion; cal = calibration (values) 1 Sample Discrimination (SD) indicates a rating of how well an individual sensor contributed to sample
discrimination.

Partial least squares (PLS) can efficiently resolve multiple data, correlation, and overlap
problems. A comparison of MAU-9 e-nose sensor array performance in the two -group and
six-group sample classifications, based on the PLS statistical model, are presented in Table 4.
Applying the PLS model to essential oil sample classifications based on data from all nine
sensors did not produce a very high level of correlation nor a very low RMSE to indicate
high predicted sample-classification accuracy, suggesting the presence of considerable
irrelevant information from underperforming sensors that reduced the model’s predictive
ability.

Table 4. Comparison of MAU-9 e-nose sensor sample-classification performance based on partial
least square statistical model.

Sample
Classification

All Sensors (R1-R9) 1 High-Performing Sensors
(MQ135, TGS813) 1

Calibration Set Prediction Set Calibration Set Prediction Set

R2 RMSE R2 RMSE

2-group 0.945 0.215 0.999 0.0050
6-group 0.938 0.162 0.999 0.0056

1 Model output statistical value abbreviations: R2 = coefficient of determination; RMSE = root mean square error.

Due to the high correlation between measured and predicted values, the PLS method
has a high ability to identify the best sensors. Using PLS method, TGS813 and MQ135 show
the highest correlation coefficient, corresponds to values presented in Figure 4.
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(b) Sensor TGS813 with associated linear regression statistical analysis results displayed for each sensor.

3.3. ANN Analysis

The perceptron neural network was used to classify the essential oils. In the input
layer of ANN analysis, preprocessed data were used to classify the essential oils. In
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the hidden layer for selecting the most efficient number of neurons, the learning phase
started with one neuron and stopped in the fifteenth neuron, each learning phase was
repeated ten times, and at the end, the average value was calculated. According to the
results, the hidden layer with 6 and 8 neurons, using the mean-variance regularized t-Test
(MVRT) function, had the lowest RMSE for the 6 and 8 class structure, 0.00721 and 0.0569,
respectively, and the highest accuracy with the best performance for the classification
of essential oils. Consequently, the neural network with 9-6-2 structure had the highest
accuracy for distinguishing the essential oils of fruits from the essential oils of medicinal
plants and the structure of 9-8-6 had the highest accuracy in the classification of all essential
oils. The structure obtained using the best results for the classification of essential oils
based on the type of essential oil (6 groups) and the essential oil family (2 groups) is shown
in Figure 5. The logarithmic sigmoid transfer function and Levenberg–Marquardt [39]
learning method were used to learn the network.
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Figure 5. The ANN structure developed for classification and identification of essential oil sample types from e-nose
output data. Separate methods with a different number of hidden layer nodes were used for: (a) 2-group classification (for
discriminating between fruit and herbal essential oil types), and (b) 6-group classification (for discriminating between all
six essential oil sample types analyzed).

The results of ANN analysis may be shown as an intended perturbation matrix and
the real network output representing the general performance indices of the network. A
perturbation matrix displays the desired classification on rows and the predicted classifi-
cation on columns. Ideally, all specimens should be in diagonal cells of the matrix. The
perturbation matrix results from a total of 90 data of essential oil of all samples in the two-
group classification, distinguishing essential oils of fruits from herbs, have been acquired
correctly and with 100% accuracy as shown previously [33]. In the 6-group classification of
all six essential oil types, only one of ninety sample was not correctly identified, indicating
a total accuracy of 98.9%. These results are confirmed by the network performance indices
presented in Figure 6.

The performance of the ANN models should be evaluated by previously unused test
data. The results also show a very good agreement between the expected and measured
data presented in Figure 7. According to the regression diagram, the proposed model had
high accuracy in two-group and six-group classification. The proximity of the predicted
data to the empirical ones (around the regression line) with high R2 indicates the precise
evaluation of the ANN in the prediction of these indices.
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4. Discussion

We investigated statistical approaches evaluating sensor array components of the
MAU-9 e-nose to determine how specific information, relative to the performance and
accuracy of individual sensors in providing accurate classifications and discriminations
of essential oil sample types, may be used to effectively improve on overall e-nose perfor-
mance. Statistical methods including PR and PLS were used to evaluate feature extraction,
model performance validation, modeling method, and selection of optimal sensors. Based
on performance of individual sensors using the PR method, four levels of classification
effectiveness, ranging from weak to very high, were defined for assessing performance of
sensors in detecting essential oils. Sensor performance also was evaluated using the PLS
method. We identified two optimal MOS sensors, MQ135 and TGS813, which performed at
very high levels of the sample-classification accuracy. The classification accuracy of these
two sensors alone performed better than all nine sensors (collectively) in the MAU-9 sensor
array. Thus, classification accuracy was greatly increased by utilizing only high-performing
sensors contributing most to discrimination of essential oil sample types. The rationale
for explaining this result was that by removing less accurate sensors providing irrelevant
information, the accuracy of the statistical model was increased by using only optimal
sensors, contributing most to sample discriminations. Fewer high-performing sensors
lead to better statistical model performance in terms of accuracy and improved stability or
consistency of results.

We utilized two different ANN statistical analysis methods to classify essential oils
based on the type of essential oil (six-group) and the essential oil family (two-group).
Topologies 2-6-2 and 8-9-6 had the highest accuracy for family and type of essential oil,
respectively. Accuracy of neural network confusion matrix classification for two-group and
six-group classification was 100% and 98.9, respectively. The ANN classification results
presented here for essential oils were better than those obtained in other studies using
ANN methods [40–44].

Sanaeifar et al. [35] showed that the coefficient of determination (R2) of multiple linear
regression (MLR), and PLS equations in calibration and validation is relatively similar
and acceptable for use in combination with the total soluble solids (TSS) index, indicating
the total amount of soluble solids dissolved in an aqueous solvent. Zhang et al. [45] used
olfactory signals to predict peach stiffness and pH. Their results showed that the PLS model
yielded high correlation coefficients and provided strong capabilities for predicting fruit
quality indicators. Karami et al. [37] detected oxidized and non-oxidized oils using the PLS
method with 99% accuracy. Ghasemi-Varnamkhasti et al. [46] also utilized the PLS method
to classify cultivars of caraway plant with 100% accuracy. Furthermore, Mabood et al. [47]
used the PLS method to predict different percentages of fraud in commercial sweeteners in
fruit juices.

Evaluations of the relationship between sample volume and sensor intensity relative
to pine essential oil composition using electronic noses with discriminant function analysis
(DFA) were studied previously [48]. The results indicated that the combination of 11 specific
electronic nose sensors increased the RMSE value from 14.65 to 6.80% and R2 from 0.674 to
0.915, compared to single-regression prediction models. Rasekh and Karami [38] detected
fraud in pure and industrial fruit juices using a MOS electronic nose and showed that this
e-nose in combination with ANN could be an efficient tool for the rapid and nondestructive
classification of pure and industrial juices. Borowik et al. [20] proposed solutions for odor
detection using an e-nose with a reduced sensor array. Many different e-nose technologies
have been used with various statistical methods to discriminate volatile emissions from a
wide variety of fruit types [49].

Zou and Lv [50] optimized an electronic nose system in terms of data preprocessing and
pattern recognition. They used the recurrent neural network (RNN) to identify the signature
pattern and to ensure accuracy and stability. Due to the preprocessing of high-dimensional
data, they used the locally linear embedding (LLE) method to reduce the dimensions. The
experiments were performed based on real sensor drift data set and the results showed that
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the proposed optimization mechanism not only had stability and higher accuracy, but also
had a shorter response time than the three baselines. The results also demonstrated the
efficiency of the RNN model in terms of reminder ratio or accuracy ratio.

Previous studies have demonstrated that sensor outputs from some e-nose sensor
arrays are influenced by environmental factors, particularly humidity, temperature, and air
pollutants [51]. A carbon filter was used in the current study to remove any contaminating
hydrocarbon pollutants in reference air that could affect sensor responses. All experiments
were performed under constant temperature and humidity conditions. Consequently, the
effects of ambient-air parameters on sensor array responses of the MAU-9 e-nose were
considered negligible.

5. Conclusions

The process of optimizing e-nose sensor array performance, by identifying sensors
that are contributing the most to aroma discriminations and eliminating sensors that do not
contribute significantly to sample classifications, is an effective means of improving on the
efficiency and accuracy of VOC-based aroma classifications. We have provided evidence to
demonstrate that e-nose sensor-array optimization, through a statistical evaluation of indi-
vidual sensor performance, based on single-sensor contributions to sample discriminations,
is an effective approach to improve on overall e-nose performance and accuracy.

An electronic-nose system usually includes a gas sensor array, data preprocessing, and
pattern recognition components. Most studies involving improvements of e-nose devices
have focus on broadening e-nose applications and have largely disregarded potential
advancements through modifications of internal components to improve on instrument
accuracy and effectiveness in sample discriminations. Recent advances in olfactory ma-
chines have led to new developments in both sensor and feature extraction, as well as
data-processing techniques, providing more information on the aroma properties of sample
analytes. Therefore, feature selection has become essential in the development of effective
e-nose applications. Statistical techniques such as PR and PLS have been used to help solve
the problem of sensor optimization, based on selecting the minimal number of sensors and
features required for competent sample discrimination. In this way, optimal application-
specific sensor arrays can be developed within e-nose devices at lower cost [13,52], but with
improved effectiveness in discriminating between samples of specific types for which new
olfactory devices are designed. However, a balance must be obtained between minimizing
sensor numbers for optimizing performance and reducing cost (on one side) with larger
and more diverse sensor arrays required for capabilities of discriminating between a wide
range of sample types consisting of VOC emissions from many chemical classes [53].

Our results indicate that the MAU-9 MOS electronic nose is a potentially useful and
effective tool for classifying purified essential oils added to or used in commercial plant
products. This method, based on the rapid evaluation of VOC emissions, is relatively simple
and does not require the separation or identification of volatile-emission components. We
have found that modifications in the MAU-9 sensor-array components through sensor
removal, substitutions, or replacements of low-performing sensors can improve overall e-
nose performance and accuracy in sample discriminations. Modifying e-nose sensor-array
components can significantly improve the effectiveness of the instrument in facilitating
enforcement of regulatory quality assurance (QA) for authentication of plant product
genuineness and quality. The possibility of building special-application electronic noses
for specific purposes, based on fewer sensors targeting the detection of specific aromas and
VOC chemical classes, has not been a strategy commonly used by sensor manufacturers.

Author Contributions: The contributions of individual authors to this study and manuscript are as
follows: individual contributions include conceptualization methodology H.K., software, statistical
analysis and data validation H.K.; formal analysis, H.K.; investigation, H.K.; resources, H.K., M.R.;
data curation H.K.; writing—original draft preparation, H.K.; writing—review and editing, A.D.W.,
M.G., funding acquisition, M.R. All authors have read and agreed to the published version of the
manuscript.



Chemosensors 2021, 9, 243 14 of 17

Funding: This research received no external funding. All research funding was provided by the
University of Mohaghegh Ardabili, Department of Biosystems Engineering.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors wish to thank Guest Editor, Simonetta Capone, Institute for Micro-
electronics and Microsystems, National Research Council (CNR-IMM), Lecce, Italy, for the invitation
to submit this article to the Chemosensors journal Special Issue, entitled “Recent Advances in Multi-
functional Sensing Technology for Gas Analysis”. This has provided an opportunity to report on the
capabilities of the MAU-9 experimental electronic-nose system to detect counterfeit and adulterated
products in commercial markets and to further improve on the MAU-9 e-nose system performance
as presented in this paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Supplementary Sensor Raw Output, Essential Oils Data from the MAU-9 MOS E-Nose System

Chemosensors 2021, 9, x FOR PEER REVIEW 16 of 19 
 

 

Appendix A 
Supplementary sensor raw output, essential oils data from the MAU-9 MOS e-nose 

system 

 
Figure A1. The aroma signatures (smellprint patterns) resulting from nine sensor-output responses of the MAU-9 elec-
tronic-nose system to aroma VOC-emissions of purified and concentrated herb and fruit essential oil samples. Sensor-
array output pattern responses to individual plant essential oil sample types are as follows: (a) tarragon, (b) mint, (c) 
thyme, (d) mango, (e) orange and (f) lemon. 

Appendix B 
Definitions of statistical methods and algorithms (with associated acronyms) 
Artificial neural network (ANN)—Computing systems inspired by biological neu-

ral networks, composed of a collection of connected nodes (artificial neurons) which 
loosely model the neurons and functions of a biological brain in data analysis and classi-
fication. 

Area under the curve (AUC)—Specifically refers to area under the Receiver Operat-
ing Characteristic (ROC) curve statistic, which is a graphical plot illustrating the diagnos-
tic ability (predictability) of a binary classifier system or model (of diagnostic or classifi-
cation data) as its discrimination threshold is varied. 

Coefficient of determination (R2)—The proportion of the variation in the dependent 
variable that is predictable from the independent variable(s). 

Correlation coefficient (R)—A calculated number (between −1 and +1) that repre-
sents the linear or quadratic dependence relationship of two variables or sets of data that 
indicates level (or correlation) of statistical-model fitness. 

Discriminant function analysis (DFA)—A multivariate test of differences between 
defined groups used to classify unknown samples based on probabilities for classification 
into a certain group (aroma class). 

Figure A1. The aroma signatures (smellprint patterns) resulting from nine sensor-output responses of the MAU-9 electronic-
nose system to aroma VOC-emissions of purified and concentrated herb and fruit essential oil samples. Sensor-array output
pattern responses to individual plant essential oil sample types are as follows: (a) tarragon, (b) mint, (c) thyme, (d) mango,
(e) orange and (f) lemon.

Appendix B. Definitions of Statistical Methods and Algorithms
(with Associated Acronyms)

Artificial neural network (ANN)—Computing systems inspired by biological neural
networks, composed of a collection of connected nodes (artificial neurons) which loosely
model the neurons and functions of a biological brain in data analysis and classification.
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Area under the curve (AUC)—Specifically refers to area under the Receiver Operating
Characteristic (ROC) curve statistic, which is a graphical plot illustrating the diagnostic
ability (predictability) of a binary classifier system or model (of diagnostic or classification
data) as its discrimination threshold is varied.

Coefficient of determination (R2)—The proportion of the variation in the dependent
variable that is predictable from the independent variable(s).

Correlation coefficient (R)—A calculated number (between −1 and +1) that repre-
sents the linear or quadratic dependence relationship of two variables or sets of data that
indicates level (or correlation) of statistical-model fitness.

Discriminant function analysis (DFA)—A multivariate test of differences between
defined groups used to classify unknown samples based on probabilities for classification
into a certain group (aroma class).

Levenberg–Marquardt algorithm—Method used to solve non-linear, least-squares
minimization problems for data-model curve fitting; also known as the damped least-
squares (DLS) method.

Multiple linear regression (MLR)—A multiple regression technique that uses several
explanatory variables to predict the outcome of a response variable, and to determine which
of many potential explanatory variables are important predictors for a given response
variable.

Mean-variance regularized t-Test (MVRT)—A mathematical function for calculat-
ing the mean-variance t-test statistic and its significance (p-Value) under sample-group
homoscedasticity or heteroscedasticity assumptions.

Partial least square (PLS)—An efficient and optimal regression method based on co-
variance that reduces predictors to a smaller set of uncorrelated components and performs
least squares regression on these components, instead of on the original data.

Pattern recognition algorithms—An automated procedure for recognition of data
patterns and regularities used in statistical analysis and signal processing. In artificial
olfaction (e-nose analysis), the method is applied by assigning multiple data sensor-input
values (from unknown samples) to defined (known) aroma classes, previously established
in an aroma (smellprint) database library.

Principal component analysis (PCA)—A method for reducing dimensionality of
datasets to increasing interpretability, minimize information loss, and create new uncorre-
lated variables that successively maximize variance.

Principal regression (PR)—A regression analysis technique based on principal compo-
nent analysis (PCA), used for estimating the unknown regression coefficients in a standard
linear regression model; also known as principal component regression (PCR).

Root mean square error (RMSE)—The standard deviation of the residuals (prediction
errors). Residuals are a collective measure of how far individual data points diverge from
the model regression line.
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