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A B S T R A C T   

Almost all fruits and vegetables sold in modern society are sorted and labeled, making it easier for customers to 
recognize the quality of the product, leading to more regular distribution and supply. Consequently, it facilitates 
the initial packaging and transportation of the product, and farmers will benefit from the added value. Therefore, 
it is necessary to develop sorting via affordable machines and easy to operate at the current technology level. 
Since electronic nose technology is new-emerging, it can be used in food quality control systems. In this study, 
the variety Padrón (Capsicum annuum L.) was evaluated. PCA, LDA, SVM and ANN methods were used to classify 
sweet and hot peppers. According to PCA, 98% of the variance in the data was detected by the first three 
components. SVM, ANN, and LDA all showed 100% accuracy in classification. The amounts of capsaicin in two 
types of sweet and hot peppers were predicted well and with high accuracy by three different methods: MLR, 
PCR, and PLSR. With this method, it is possible to reliably separate sweet and hot peppers based on odor pa-
rameters, and it is also possible to develop sorting machines according to the characteristics of odor.   

1. Introduction 

Pepper (Capsicum annuum L.) is one of the most consumed vegetables 
in the world, containing a large amount of vitamins C and A, as well as 
minerals. Therefore, the consumption of about 60–80 g of pepper per 
day can provide 100 and 25% of the recommended daily amount of 
vitamin C and A, respectively. In addition, this horticultural product 
contains considerable levels of other health-promoting substances with 
antioxidant activity, including carotenoids, flavonoids, and other poly-
phenols (Palma, Terán, Contreras-Ruiz, Rodríguez-Ruiz, & Corpas, 
2020). 

There is a great variety of peppers, differing essentially in shape, size, 
thickness of the flesh (pericarp), and final color at the stages of ripeness. 
Depending on their capsaicin content, pepper fruits are classified as 

sweet or hot in terms of their cooking and food properties (Fratianni 
et al., 2020). 

The real difference between sweet and hot peppers is therefore found 
entirely in the taste: on the on hand, hot peppers contain capsaicin, a 
pungent component that burns not only the tongue, but also the fingers. 
Their burning taste is so overwhelming few people notice their under-
lying flavors. On the other hand, sweet peppers, contains no capsaicin or 
very, very little of it, so richer, sweeter flavors come to the forefront. 
Capsaicin belongs to the genus Capsicum, which can cause pungency. 
These fruits are rated using the Scoville scale, which assigns a value to 
each variety. On this scale, the maximum value for the hottest pepper 
variety is about 106 × 3, and pure capsaicin is 16 × 106 (Kopta, Sekara, 
Pokluda, Ferby, & Caruso, 2020; Palma et al., 2020). 

According to pharmacological research, capsaicinoids, especially 
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capsaicins, have a variety of biological and physiological functions in 
vitro and therefore act as antioxidants, stimulants of energy metabolism, 
fat accumulating suppressors, and anti-inflammatory drugs (Liu et al., 
2020). 

Pepper fruits also have a characteristic ripening process determined 
by their color changing from green to red, yellow, orange or purple, 
depending on the variety. The process involves the breakdown of chlo-
rophyll and the synthesis of new carotenoids and anthocyanins, the 
release of organic volatiles, the synthesis of new proteins and the 
breakdown of existing proteins, and the softening of the cell wall and so 
on (L. Zhang et al., 2018). 

The quality of fresh pepper depends primarily on consumer accep-
tance, which is determined primarily by color, pungency, and aroma. 
Aroma plays an essential role in determining the sensory characteristics 
of these products. Volatile organic compounds (VOCs) are generally 
associated with the taste and aroma of foods and are important factors in 
assessing consumer acceptance or rejection. Consequently, food quality, 
originality, purity, and origin can be evaluated by determining VOC 
(Korkmaz, Hayaloglu, & Atasoy, 2017). It has been reported that the 
aroma of peppers is closely related to their volatile components (Buttery, 
Seifert, Guadagni, & Ling, 1969). 

Agricultural product sorting is a post-harvest activity based on di-
mensions, shape, and color. The grading of agricultural products, 
especially fruits and vegetables, has become a global trade. It is 
important in several ways, such as to control pests and diseases during 
the post-harvest process, to create added value for the farmer, and to 
allow the consumer to make a choice. National and international stan-
dards must be met when preparing products for export. Sorting and 
packaging of agricultural products is one of the ways in which developed 
countries add value to their products and increase their competitiveness 
in global markets (Nalbandi, Seiiedlou, Beranki, & Farzand Ahmadi, 
2021). 

Almost all fruits are sold in international markets sorted and labeled, 
which makes it easier for customers to recognize the quality of the 
product and ensures more regular distribution and supply (Nalbandi 
et al., 2021). 

Currently, pepper classification is increasing in importance owing to 
international markets offering a price advantage for high-quality prod-
ucts. A product’s homogeneity and appearance have a significant posi-
tive effect on a consumer’s decision to purchase it. For this reason, 
agricultural produce is categorized for the final consumer. Classifying 
peppers is a time-consuming, manual task. One method of doing this is 
using trained inspectors to select and sort chilis; however, this process is 
quite subjective (Cruz-Domínguez et al., 2021). 

To classify sweet and hot peppers and meet standards, sorting must 
be unique and accurate, this process is a time-consuming, manual task. 
One method of doing this is using trained inspectors to select and sort 
chilis; however, this process is quite subjective (Cruz-Domínguez et al., 
2021). Hence, this labor-intensive grading leads to bias due to human 
error and inconsistencies in classification. A technology for unambigu-
ous and accurate classification of dried pepper quality is needed to 
minimize errors during sorting (Azis, Khuriyati, & Suyantohadi, 2021). 

Traditional methods for determining the quality of fresh-cut vege-
tables are based on chemical, microbiological, physical, and sensory 
indicators such as phenolic compounds, mold and bacterial counts, 
texture, and color. Most conventional methods are time consuming and 
require qualified personnel. Gas chromatography-mass spectrometry 
(GC-MS) has also been used to analyze volatile compounds in food. 
However, rapid detection of volatile profiles is not feasible (Chen, 
Zhang, Bhandari, & Guo, 2018). 

E-nose, not only mimics digitally the human olfaction but also is 
capable of detecting and classifying the toxic vapors through a compli-
cated method. Electronic nose includes a series of electrochemical sen-
sors, which can detect simple or complicated smells. Generally, E-nose 
evaluates a mixture of smells released from a sample and is a reliable, 
nondestructive, cost-effective, and portable method with high feasibility 

and speed as well as simple use (Karami, Rasekh, & Mirzaee-Ghaleh, 
2020b). Using a computer system, the responses are collected and 
analyzed using multivariate data analysis methods (Karami, Rasekh, & 
Mirzaee–Ghaleh, 2020). For the analysis of sensor response data, there 
are several methods such as cluster analysis (CA), principal component 
analysis (PCA), linear discriminant analysis (LDA), etc., which are linear 
approaches. While fuzzy logic, artificial neural networks (ANN), and 
probabilistic neural networks (PNNs) are nonlinear methods (Loutfi, 
Coradeschi, Mani, Shankar, & Rayappan, 2015). 

Electronic noses are an effective method for measuring the degree of 
ripeness and other quality indicators of fruits and vegetables. Recently, 
these sensors have been investigated for their ability to detect the vol-
atile odor associated with fruit ripening during storage (Gomez, Wang, 
Hu, & Pereira, 2007). The electronic tool was used to identify volatile 
components of fruits and vegetables, including mango (Lebrun, Plotto, 
Goodner, Ducamp, & Baldwin, 2008), tomato (Gomez, Wang, Hu, & 
Pereira, 2008), potato (Khorramifar, Rasekh, Karami, Malaga-Toboła, & 
Gancarz, 2021; Rutolo, Clarkson, & Covington, 2018), apple (Ezhilan, 
Nesakumar, Jayanth Babu, Srinandan, & Rayappan, 2018), peach 
(Benedetti, Buratti, Spinardi, Mannino, & Mignani, 2008), tea (Borah 
et al., 2008), green bell pepper (Chen et al., 2018), broccoli (Ezhilan, 
Nesakumar, Babu, Srinandan, & Rayappan, 2019), coffee (Gonzalez 
Viejo, Tongson, & Fuentes, 2021), and saffron (Heidarbeigi et al., 2015). 

According to today’s standards, capsaicin is one of the determinants 
of pepper pungency, which is directly related to the odor of the sample. 
Because it is important to distinguish hot peppers from sweet ones, we 
used an electronic nose to distinguish sweet peppers from hot peppers in 
this study. Research has shown that the electronic nose is able to 
discriminate between VOCs products. As this technology is emerging 
and has high accuracy, it can be used in food quality control systems. 
The purpose of this study is to provide some base research for further 
investigations on practical developments in large-scale hot and sweet 
pepper classification. Thus, the predominant contribution of this study is 
to present a new alternative for classifying peppers based on hot and 
sweet by combining E-nose with chemometrics methods. Capsaicin 
index will also be used to model the spiciness and sweetness of peppers. 
The findings will benefit the field of agriculture by exploring new ways 
to classify hot and sweet peppers. To the best of our knowledge, such a 
study has not been conducted in this field to date. This approach rep-
resents an innovative, feasible, and economical alternative for farmers 
who require efficient pepper classification on a daily basis. 

2. Materials and methods 

2.1. Sample preparation 

The variety used in this study was Padrón, a very popular species in 
Spain (Fig. 1). The green fruits showed no signs of ripening or discol-
oration and remained completely green. 

The peppers weighed an average of 12 ± 2 g when fresh. The weights 
for the sweet and spicy varieties were determined by weighing 30 fruits 
each. The fruits to be examined were first evaluated by electronic nose, 
since it is a non-destructive method. Then, they were prepared for the 
study of capsaicin content. Hence, the pericarp (when the seeds and 
placenta were discarded) was removed (Fig. 1B), cut into small cubes 
(approximately 3–5 mm), frozen under liquid nitrogen, and kept at 
− 80 ◦C. Biochemical parameters were determined three repetitions on 
30 sweet and 30 spicy peppers. 

2.2. Non-destructive evaluation method by electronic nose 

The experiments were performed using an olfactory device fabri-
cated in the Department of Biosystems Engineering, Mohaghegh Arda-
bili University (Rasekh, Karami, Wilson, & Gancarz, 2021b) (Fig. 2). 
This device consists of 9 metal oxide sensors for odor measurement 
(Rasekh, Karami, Wilson, & Gancarz, 2021a). The names of the sensors 
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(in order, with primary VOCs detected) are as follows: TGS813 (aliphatic 
alkanes), TGS822 (organic solvents), TGS2620 (alcohols, organic sol-
vents), MQ3 (alcohols), MQ4 (urban gases and methane), MQ8 
(hydrogen), MQ9 (carbon monoxide and combustible gases), MQ135 
(ammonia, benzene, sulfides), and MQ136 (sulfur dioxide). 

We prepared 60 samples to discriminate between hot and sweet 
peppers. Samples of each pepper were placed in a 50 mL sample 
chamber. The electronic nose operates in three stages. The first and last 
each require 100 s to clean the sensor housing and achieve the baseline 
response of the sensor. Before sampling, the sensors were cleaned with 

air (oxygen). In the last phase of cleaning, oxygen is again passed 
through the sensors and the odor inside the sample chamber is expelled 
by the pump. In the second phase, the odor evaluation stage, a dia-
phragm pump removes the sample odor and blows it onto the sensors. 
During this phase, the output voltage of each sensor changes according 
to its type and sensitivity level, which was also considered as 100 s. The 
volume of the sensor chamber containing the sensor array was 1414 
cm3. The inlet flow into the sensor chamber was 1.5 L per minute and the 
sampling chamber volume was 50 cm3. Sensors within the sensor array 
respond differently to sample aromas (VOC emissions) from different 

Fig. 1. Representative pictures of plant materials used in this work. (a) Fruits from the Padrón varieties with different shape. (b) Different parts of the pepper fruit.  

Fig. 2. Functional block diagram of the designed E-nose system.  
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volatile sample types. The trained system records the voltage response of 
the sensors. A fractional method was used to preprocess the obtained 
signals following the experiments. The room temperature was controlled 
at (20 ± 0.5 ◦C) during sample preparation and detection to help 
minimize changes in carrier input-air relative humidity prior to being 
filtered by the activated-charcoal carbon. At the end, the preprocessed 
data were evaluated and analyzed using chemometric methods (PCA, 
CA, LDA, SVM, ANN, PLSR, PCR and MLR) (Karami, Rasekh, & 
Mirzaee-Ghaleh, 2021; Rasekh & Karami, 2021a). 

2.3. Chemometrics methods 

Principal component analysis (PCA) is a multivariate statistical 
analysis method that can transform data into a new coordinate system. 
In other words, it can convert multivariate information into multiple 
synthetic variables. PC was used to determine patterns in the dataset and 
identify outliers by visual inspection. LDA, SVM, and ANN were used to 
classify sweet and hot peppers. All these methods were performed on 
electronic nose output data. 

Linear detection analysis (LDA) is a statistical method to find a linear 
combination of features that can best distinguish two or more objects 
(McLachlan, 2004). To optimize the discrimination between groups, the 
LDA method maximizes the within-group variance while minimizing the 
within-group variance (Karami, Rasekh, & Mirzaee-Ghaleh, 2020a). In 
addition, Support Vector Machine (SVM) was used to classify linear and 
nonlinear data. C-SVM and Nu-SVM are used in this method to classify 
the data. In both cases, the difference is how to select the Nu, C and γ 
parameters to minimize the error function and express the problem as an 
optimization problem. Data with linear distribution was selected to 
obtain a high confidence margin (Karami et al., 2020b). 

An artificial neural network (ANN) is made up of layers of process 
elements called neurons, consisting of three layers: an input layer, a 
hidden layer, and an output layer. Hidden layers may be increased as 
needed (Karami et al., 2020a; Rasekh & Karami, 2021b). 

The amount of capsaicin was predicted using PLSR, PCR, and MLR. A 
multivariate statistical analysis method known as PLSR is suitable for 
solving prediction problems. Calibration models (PLSR), a Y reference, 
were developed to investigate the possibility of predicting chemical 
parameters using EN signals. Matrix X was taken as the E-nose signal and 
matrix Y as the capsaicin parameter (Abu-Khalaf, 2021). As with PCR, 
PLS is used to create models based on orthogonal reciprocal factors. The 
PLS method generates these factors in a different way than the PCR 
method. In the PCR method, the principal component is the matrix of 
variables, while in the PLS method, the relationship between the vari-
ables and the matrices of the dependent variables is considered. Ac-
cording to the PLS method, each factor describes the maximum 
covariance between the variables and the dependent variables. Covari-
ance combines the high variance of the variable matrix with a high 
correlation of the desired trait (Szulczyński, Rybarczyk, & Gębicki, 
2018). To evaluate the accuracy of the PLSR and PCR models, the 
following parameters were used: Correlation coefficient in the calibra-
tion set (R2cal), correlation coefficient in the validation set (R2val), root 
mean square error of the calibration set (RMSEcal), and root mean 
square error of the validation set (RMSEval). The PLS model can be 
considered an acceptable model if the number of PCs is low, and there 
are low values of RMSE and high values of R2. Also, the distance be-
tween the two sets is high (i.e., calibration and validation). Once the 
number of optimal PCs (C) was determined, their values were used to 
build the MLR model. The multiple linear regression (MLR) method was 
used to build predictive models for capsaicin content in sweet and hot 
peppers. 

2.4. Determination of capsaicin by high-performance liquid 
chromatography-electrospray mass spectrometry (HPLC-ES/MS) 

First, the samples were ground to powder under N2 liquid. The plant 

material (0.5 g powder) was suspended in 2 mL acetonitrile (AcN) 
containing 100 ppm of N - [(3,4-dimethoxyphenyl) methyl] -4-methyl- 
octanamide (DMBMO). The mixtures were incubated as follows: 1 h at 
room temperature and in the dark with constant shaking, 65 ◦C and 
darkness for 1 h and brief shaking every 15 min, and 1 h at room tem-
perature in the dark. Samples were then centrifuged at 16,000×g at 
room temperature for 15 min. The supernatant was passed through 0.22 
μm polyvinylidene fluoride filters and used for HPLC-ESI/MS analysis by 
multiple reaction monitoring (MRM). An XBridge 2.1 × 10 mm pre-
column and an XBridge 2.1 × 100 mm C18 3.5 μm column (Waters 
Corporation, Milford, MA, USA) were connected to an HPLC Allience 
2695 system with a triple quadrupole mass micro API. Both were pro-
vided by Waters Company. Chromatography was performed at a flow 
rate of 0.3 mL/min at 35 ◦C for the column and 5 ◦C for the automatic 
injector; then 5 μL per sample was injected. The gradient used was: 6 
min with AcN: H2O (60:40) containing 0.1% (v/v) formic acid, 10 + 5 
min with AcN: H2O (90:10); and 20 + 4 min with AcN: H2O (60:40). 

A standard curve was established with pure capsaicin (Cayman 
Chemical, Ann Arbor, MI, USA). Under these conditions, capsaicin had a 
retention time of 1.88 min. Capsaicinoids concentration were measured 
in micrograms per gram fresh weight (FW) (Kopta et al., 2020; Palma 
et al., 2020). 

3. Results and discussion 

In this study, peppers of Padron varieties with spicy and sweet taste 
were investigated. Therefore, we measured the capsaicin content in the 
pericarps. Table 1 shows the capsaicin content for both sweet and spicy 
Padrón cultivars. Sweet and spicy cultivars were considered to have 
capsaicin less and greater than 5 (μg/g) fresh weight, respectively. 

3.1. PCA results 

Fig. 3 presents the results obtained by the PCA method for 2 group of 
peppers. The PCA diagram shows the total variance of the data for 2 
group of peppers as PC-1 (90%), and PC-2 (6%). Therefore, the first two 
main components formed 96% of the total variance of normalized data. 
According to Fig. 3, The hot peppers can be observed on the right side 
are highlighted in red, while the sweet peppers is presented on the left 
side of the graph are highlighted in blue, making the two groups of 
peppers completely distinct. Thus, the e-nose well responded to the 
smell of the hot and sweet peppers. An electronic nose with 12-MOS- 
based gas sensors have been used to classify the quality of 3 Indonesia 
black tea. The experimental results showed that all three samples almost 
have the same aroma when observed from the sensor response. The 
results of the PC-1 and PC-2 components accounted for 80.3% and 
15.3% of the variance, respectively (Lelono, Triyana, Hartati, & 
Istiyanto, 2016). Additionally, an electronic nose was also used to pre-
dict rapeseed quality with detection accuracy of 100% (Gancarz et al., 
2017), coffee bean roasting with detection accuracy of 91.68% (Gancarz 
et al., 2022) and to detect early signs of soft-rot infection in potatoes, 
with 100% detection accuracy (Rutolo et al., 2018). 

The sensors respond to the odor of the samples, as shown in Fig. 4. 
The highest sensor intensity in response to volatiles (VOCs) was recor-
ded by gas sensors MQ135, MQ4, MQ9, and TGS822, while the lowest 
sensor intensity was observed by MQ3. Comparing Fig. 4A and B, it is 
clear that the MQ135 sensor responded equally in both samples, while 

Table 1 
Content of capsaicin in pericarp.   

Capsaicin (μg/g FWa) 

Min Max Average 

Sweet 1.50 2.25 1.947 
Hot 6.40 10.10 8.248  

a FW, fresh weight. 
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the other sensors, with the exception of the MQ3 sensor, responded 
differently in both samples. In other words, they responded more 
strongly to spicy samples than to sweet ones, which this can justify the 
why these samples were classified with such high accuracy. Therefore, it 
can be argued that the MQ3 sensors, which are mainly for detecting the 
smell of alcohol with the lowest response and the MQ135 sensors, which 
are mainly for detecting the smell of ammonia, benzene, and sulfides 
with the highest response do not play an important role in classifying 
peppers. A good understanding of the most important and least impor-
tant variables can help reduce the complexity of the device (sensors) and 
reduce calculations and overfitting in the analysis phase, and reduce 

manufacturing costs (Rasekh et al., 2021b; Rasekh & Karami, 2021b). 

3.2. CA results 

Clustering analysis is a machine learning method known as unsu-
pervised learning. Using Ward’s dendrogram method, clustering can be 
observed more clearly between closely spaced samples. To perform this 
analysis, the output signal of the sensors was analyzed by The Un-
scrambler software. The dendrogram classified 60 pepper samples into 2 
clusters according to the squared Euclidean distance. As shown in Fig. 5, 
the hot samples were in the first cluster with a relative distance of 3.8 

Fig. 3. Results of PCA scatter obtained from E-nose for classification Hot and Sweet pepper.  

Fig. 4. Example of e-nose sensor array output response, indicated by individual sensor responses to a) hot pepper and b) sweet pepper sample VOC emissions in 
headspace, to form a bar graph smell print pattern. 
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Figure 5. CA dendrogram obtained from E-nose data for Hot and Sweet pepper.  

Fig. 6. Results of LDA method for 2 group of peppers.  
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and the sweet peppers were in the second cluster with a relative distance 
of 2.4. All the 60 samples were correctly assigned to the two groups. 

3.3. LDA results 

The classification results of the 2 group of peppers on the coordinates 
based on first linear discriminant (LD1) and second linear discriminant 
(LD2) are shown in Fig. 6 as score plots. The model inputs were obtained 
from 9 metal oxide sensors; the weight of the model inputs was one. This 
method showed 100% accuracy for 2 group of peppers. The purpose of 
this method was to determine the difference between sweet pepper and 
hot pepper. Tatli, Mirzaee-Ghaleh, Rabbani, Karami, and Wilson (2022), 
Classified cucumber fruits based on the amount of urea fertilizer used in 
five treatments by LDA method with 92% accuracy. In another study, 
E-Nose was used to identify counterfeit labels of virgin olive oil, which 
resulted in more than 95% classification accuracy for LDA method 
(Cerrato Oliveros et al., 2002). Khorramifar et al. (2022) Obtained 92% 
accuracy from e-nose to identify and classify five grape cultivars based 
on VOC emission by LDA method. 

3.4. SVM results 

C-SVM and Nu-SVM methods were employed to classify 2 group of 
peppers. The parameters γ, Nu, and C were validated by trial and error 
through minimization. 70% of the data were used for training while 30% 
of them were utilized for testing. The input weights were equal to one for 
all data. Four functions of linear, sigmoid, radial, and polynomial were 
used to classify 2 group of peppers. The results of the SVM method are 
shown in Table 2. According to the results obtained for classify 2 group 
of peppers, all models showed 100% accuracy for training and valida-
tion (Table 2). Ghasemi-Varnamkhasti, Mohammad-Razdari, Yoosefian, 
Izadi, and Rabiei (2019) to describe the freshness of strawberries in 
polymer packaging using the Nu-SVM method with radial base function, 
they reported 85.2% and 55.6% accuracy for training and validation. 
Gorji-Chakespari, Nikbakht, Sefidkon, Ghasemi-Varnamkhasti, and 
Valero (2017) Reported the Damask rose essential oil classification was 
reported with 99% accuracy. 

3.5. ANN results 

Table 3 presents the statistical data for the ANN model developed 
based on the e-nose signals as input (number of sensors) and group of the 
peppers (hot and sweet) as targets; these neurons were considered 9 for 
input layer and 2 for output layer, respectively. Of the total data, 60, 20, 
and 20% were used for training, validation, and testing, respectively. 
The results are shown in Table 3. The developed models were evaluated 
in terms of correct classification rate (CCR) and root mean square error 
(RMSE). The accuracy of the artificial neural network method was very 
high, that is, its accuracy was 100% for classify 2 group of peppers. All 
topologies used provided 100% accuracy train and test. 

Overall, it can be concluded that all the models used for the classi-
fication of sweet peppers of the spicy type were 100% accurate due to 
the clear division between pepper groups. The result of the experiment is 
quite logical, because hot peppers seem to have a stronger aroma than 

sweet ones, and this intensity of aroma can be easily detected by an 
electronic nose. Jana et al. (2011) used E-nose with PCA, LDA and ANN 
to detect non-aromatic and aromatic rice. The accuracy of the results 
obtained by these methods was 96.5%, 80%, and 93% respectively. The 
results of this study showed high accuracy, maybe due to the presence of 
different VOCs emitted from peppers. B. Zhou, Wang, and Qi (2012) 
used e-nose to distinguish between grain types of wheat. They used 
several statistical methods. PCA had an accuracy of 99.7%, while LDA 
accuracy was 97.2%. The accuracy of classification using BPNN model 
for training and testing the data set was 100% and 90%, respectively. An 
e-nose was employed for the rapid identification of quality grades of 
green tea for the two neural networks BPNN and PNN, the classification 
success rates was 100% and 98.7% for the training set, respectively and 
these were, respectively, 88% and 85.3% for the testing sets (Yu, Wang, 
Yao, Zhang, & Yu, 2008). The results of hot and sweet pepper classifi-
cation using ANN in this study were consistent with those of other re-
searchers (Alphus Dan Wilson, 2012; Alphus D.; Rusinek, Jeleń, 
Malaga-Toboła, Molenda, & Gancarz, 2020; Rusinek, Kmiecik, et al., 
2020; Wilson, 2013). In another study, an e-nasal system was used to 
extract tea flavour characteristics and classify black tea quality based on 
these characteristics. Using chemometric methods, the features extrac-
ted from a sensor array with ten different metal oxide gas sensors were 
used to classify five quality groups of black tea. The results showed that 
ANN perform best with an overall classification accuracy of 88%. 
Following that, the LDA and SVM methods also had accuracies of 78% 
and 67%, respectively. Overall, the performance of the e-nose system 
was found to be adequate in classifying Iranian black tea (Payman, 
Bakhshipour Ziaratgahi, & Sanaeifar, 2019). 

The researchers evaluated the freshness of broccoli using four 
different techniques: e-nose, bacterial culture test, gas chromatography- 
mass spectrometry (GC-MC), and Fourier transform infrared (FTIR) 
spectroscopy. PCA methods and cluster analysis offered acceptable re-
sults (Ezhilan et al., 2019). The results of this study were consistent with 
the findings of Hidayat et al. (2019) who used an e-nose and ANN to 
determine the quality of coffee beans and reported an accuracy of 99%. 

3.6. Prediction of capsaicin amount in the hot and sweet peppers based on 
PLSR and PCR methods 

The relationship between E-nose signals and the prediction of 
Capsaicin indices was described by PCR and PLSR models. The perfor-
mance of these models for Capsaicin was evaluated using RMSE and R2. 

Table 2 
Results and comparison of Nu-SVM and C-SVM modelsa subjected to the kernel functions.  

Kernel function C-SVM Nu-SVM 

C γ Train Validation Nu γ Train Validation 

linear 1 1 100 100 0.01 1 100 100 
Polynomial 100 0.1 100 100 0.255 0.1 100 100 
Radial basis function 1 1 100 100 0.255 0.01 100 100 
sigmoid 100 0.01 100 100 0.255 0.01 100 100  

a Statistical analysis models and parameters used for data analysis: Nu-SVM = Nu Support Vector Machine classification, and C-SVM = C Support Vector Machine 
classification. Coefficient parameter symbols: c = C-SVM penalty coefficient; Nu = Nu-SVM penalty coefficient; γ = core coefficient. 

Table 3 
Artificial neural network results.  

Topology Train Test CCR(%)a 

RMSE R2 RMSE R2 

9-2-2 2.67 × 10− 14 0.999 3.84 × 10− 13 0.999 100 
9-3-2 1.68 × 10− 15 0.999 5.68 × 10− 14 0.999 100 
9-4-2 5.40 × 10− 11 0.999 1.72 × 10− 7 0.999 100 
9-5-2 3.44 × 10− 11 0.999 1.08 × 10− 5 0.999 100 
9-6-2 1.98 × 10− 14 0.999 4.46 × 10− 12 0.999 100  

a The value of CCR was obtained from the confusion matrix. 
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The Root Mean Square Error Validation (RMSEval) of root was chosen as 
a numerical tool to select the optimal model (Table 4). 

In our study, we found that the best model for the prediction of 
capsaicin was the PLSR method which showed more accuracy than PCR. 
Using the PLSR method for sweet peppers, the R2 calibration and vali-
dation values were 0.907 and 0.860, respectively, and the RMSEcal and 
RMSEval values were 0.063 and 0.085, respectively. RMSEcal and 
RMSEval were calculated for hot peppers as 0.230 and 0.344, and with 
R2cal and R2val values of 0.951 and 0.896, respectively. As shown in 
Table 4, both the PLSR and PCR methods were more accurate in 
measuring capsaicin in hot peppers than in sweet ones. The PLSR and 
PCR regression models for capsaicin index are shown in Table 5. The 
models are obtained from Equation (1), where Y is the predicted value 
(capsaicin index), a0 is the constant coefficient of the equation (inter-
cept), and C1 to Cn represent the optimal factors or coefficients of each 
predictor variable (sensor array).  

Y = a0 + C1S1 + C2S2 + … + CnSn                                                 (1)  

3.7. Prediction of capsaicin amount in the hot and sweet peppers based on 
MLR 

MLR creates a model describing the relationship between sensor 
signals and capsaicin indices. The remaining variables are all significant 
at the 0.01 level. Then, different statistical methods were used to test the 
final equations for stability and validity. Four criteria were used to select 
the correct equation for further analysis, namely R2, RMSE, F-statistic, 
and the number of descriptors in the model. 

In this study, the Leverage Correction method was used, in contrast 
to the PCR and PLSR validation methods, which used cross-validation. 
For the best MLR models, the R2 and F values are high, the standard 
error of prediction is low, the descriptors are minimal, and the predictive 
power is high. We used the optimal dataset from Table 4, which con-
tained six PCs for sweet peppers and seven PCs for hot peppers, as input 
data (X) to build the prediction models. In the experiment, the training 
data set and the test data set were randomly selected. The correlation 
coefficient (R2) and root mean square error (RMSE) between the 
experimental and the predicted values were used to evaluate the per-
formance of the model. 

The multiple linear regression (MLR) method is located between 
PLSR and PCR in terms of mean square error and was used to construct 
PCR and PLSR models. After analyzing and determining the optimal 
factors, the PCR and PLSR models were considered as independent 
variables and the MLR model was used. Correlation plots is shown in 

Fig. 7 as a visual method to evaluate the models fit with experimental 
data. Equations (2) and (3) represent the model obtained by MLR based 
on the optimal factors of PCR and PLSR for predicting the amount of 
Capsaicin in the sweet peppers:  

Capsaicin biased PCR = 1.947 + 2.282 × C1 + 0.968 × C2 + 1.475 × C3 +

2.627 × C4 + 5.960 × C6 + 0.009                                                     (2) 

C5 is not significant at the 0.01 level, so are deleted in the model. 
Values obtained for the model; R2 = 0.784; RMSE = 0.099; F = 24.593; 
P < 10− 4.  

Capsaicin biased PLSR = 1.947 + 2.355 × C1 + 2.120 × C2 + 1.812 × C3 +

3.976 × C5 + 0.006                                                                         (3) 

C4, C6 are not significant at the 0.01 level, so are deleted in the 
model. Values obtained for the model; R2 = 0.851; RMSE = 0.082; F =
37.784; P < 10− 4. 

Also equations (4) and (5) represent the model obtained by MLR 
based on the optimal factors of PCR and PLSR for predicting the amount 
of Capsaicin in the hot peppers:  

Capsaicin biased PCR = 8.248 + 5.777 × C1 – 3.271 × C2 – 25.608 × C4 – 
17.965 × C5 + 28.091 × C6 -34.223 × C7 + 0.009                              (4) 

C3 is not significant at the 0.01 level, so are deleted in the model. 
Values obtained for the model; R2 = 0.912; RMSE = 0.315; F = 60.373; 
P < 10− 4.  

Capsaicin biased PLSR = 8.247 + 6.084 × C1 + 13.373 × C2 + 16.717 × C3 
+ 7.439 × C4 + 13.826 × C5 + 0.099                                               (5) 

C6, C7 are not significant at the 0.01 level, so are deleted in the 
model. Values obtained for the model; R2 = 0.912; RMSE = 0.315; F =
61.900; P < 10− 4. 

Fig. 7 shows the MLR prediction models for the predicting the 
amount of Capsaicin in the sweet and hot peppers. 

The figures show a linear correlation between the sensors’ responses 
and the Capsaicin index, so the model made with the optimal parameters 
of the PLSR method predicts the Capsaicin index of both sweet and hot 
peppers with high accuracy. 

The results illustrated that the PCR and PLSR models were more 
accurate in predicting sugars and carbohy-drates than toughness 
parameter. Similar results have been reported for PLS models.Abu--
Khalaf (2021), studied the quality parameters of olive oil using PLS 
models to analyze the chemical data and EN. The results illustrated that 
EN could model the acidity parameter with good performance. The 
correlation coefficients obtained for the PLS model for acidity were 0.87 

Table 4 
PCR and PLSR models analysis results for predicting Capsaicin.   

Model R2
cal R2

val RMSEcal RMSEval Offsetcal Offsetval Optimal factor 

Sweet PCR 0.865 0.768 0.077 0.101 0.262 0.416 6 
PLSR 0.907 0.860 0.063 0.085 0.179 0.241 6          

Hot PCR 0.951 0.905 0.230 0.333 0.399 0.600 7 
PLSR 0.951 0.896 0.230 0.344 0.399 0.415 7  

Table 5 
The regression coefficients estimated by MLR and PLS models.   

Model a0 C1 C2 C3 C4 C5 C6 C7 

Sweet PCR − 0.398 − 4.658 1.329 3.983 − 1.300 2.076 0.131 – 
PLSR − 0.516 − 7.438 1.222 3.647 − 1.332 1.503 0.948 –           

Hot PCR 9.974 − 11.309 6.164 0.279 − 7.939 29.522 − 0.279 − 25.741 
PLSR 9.697 − 11.439 6.075 0.130 − 8.204 27.769 − 1.355 − 24.240  
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and 0.87 for the calibration and validation, respectively. X. Zhang et al. 
(2019) reported similar results using the PLSR method and electronic 
nose for grapes with R2 of 0.93. In another study, using partial least 
squares spectroscopy and linear Discriminant analysis (PLS-LDA), 
similar results were obtained (R2 = 0.96), which is in agreement with 
our results (Z. Zhou, Zeng, Li, & Zheng, 2015). 

4. Conclusions 

Using an e-nose in combination with machine learning can be a quick 
and cost-effective way to sort edible peppers. VOCs released by hot and 
sweet peppers differ significantly from each other, and this property can 
be used to develop nondestructive sorting machines as a reliable 
method. The development of a portable e-nose system with sensitive gas 
sensors and pattern recognition could provide a new approach to meet 
these requirements. In addition, it could offer several advantages over 
conventional methods so that this method is a cheap, fast and non- 
destructive technique, so it can be used not only for food quality con-
trol but also for production process control. As a result, the production 
performance is improved and the production process is better 
controlled, also provide a solution to the related challenges. Since the 
classification of hot and sweet pepper using an electronic nose has not 
yet been researched, the promising results of this study can be widely 
applied in the sorting industry. It is recommended that future studies 
focus on the reproducibility of electronic nasal systems developed in a 
wider range of peppers on the market. 

CRediT authorship contribution statement 

Mansour Rasekh: Formal analysis, Funding acquisition, Conceptu-
alization, Project administration. Hamed Karami: Investigation, 
Conceptualization, Supervision, Methodology, Formal analysis, Soft-
ware, Writing – original draft, Data curation, Writing – review & editing, 
Project administration. Sigfredo Fuentes: Writing – review & editing. 
Mohammad Kaveh: Data curation, Writing – review & editing. Robert 
Rusinek: Writing – review & editing. Marek Gancarz: Formal analysis, 
Funding acquisition, Data curation, Writing – review & editing. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

References 

Abu-Khalaf, N. (2021). Identification and quantification of olive oil quality parameters 
using an electronic nose. Agriculture, 11(7), 674. 

Azis, Y. A., Khuriyati, N., & Suyantohadi, A. (2021). Classification of dried chilli quality 
using image processing. IOP Conference Series: Earth and Environmental Science, 686 
(1), Article 012058. https://doi.org/10.1088/1755-1315/686/1/012058 

Benedetti, S., Buratti, S., Spinardi, A., Mannino, S., & Mignani, I. (2008). Electronic nose 
as a non-destructive tool to characterise peach cultivars and to monitor their 
ripening stage during shelf-life. Postharvest Biology and Technology, 47(2), 181–188. 
https://doi.org/10.1016/j.postharvbio.2007.06.012 

Fig. 7. MLR prediction models for predicting the amount of Capsaicin in the sweet and hot peppers based on a) PCR for sweet peppers, b) PLSR for sweet peppers, c) 
PCR for hot peppers, d) PLSR for hot peppers. 

M. Rasekh et al.                                                                                                                                                                                                                                 

http://refhub.elsevier.com/S0023-6438(22)00602-8/sref1
http://refhub.elsevier.com/S0023-6438(22)00602-8/sref1
https://doi.org/10.1088/1755-1315/686/1/012058
https://doi.org/10.1016/j.postharvbio.2007.06.012


LWT 164 (2022) 113667

10

Borah, S., Hines, E. L., Leeson, M. S., Iliescu, D. D., Bhuyan, M., & Gardner, J. W. (2008). 
Neural network based electronic nose for classification of tea aroma. Sensing and 
Instrumentation for Food Quality and Safety, 2(1), 7–14. https://doi.org/10.1007/ 
s11694-007-9028-7 

Buttery, R., Seifert, R., Guadagni, D., & Ling, L. (1969). Characterization of some volatile 
constituents of bell peppers. Journal of Agricultural and Food Chemistry, 17(6), 
1322–1327. 
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