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A B S T R A C T   

Farm tractors have different driving systems, including four-wheel drive and rear-wheel drive which are common 
systems employed to conduct agricultural operations all over the world. The type of driving system influences 
tractor wheel slip which is one of the most effective factors in soil compaction. Hence a series of experiments 
were conducted using Goldoni 240 tractor to investigate the effects of tractor driving systems, including four- 
wheel drive (4WD), rear-wheel drive (RWD), and front-wheel drive (FWD) at different travel speeds, soil 
moistures, number of passes (1, 5, and 9), and soil textures (clay loam, loam, and sandy loam) at the depths of 10, 
20, 30, and 40 cm. Increasing tractor wheel slip showed a significant effect on increasing soil compaction. The 
lowest tractor wheel slip was occurred using the 4WD system, and by increasing travel speed in this system, soil 
compaction decreased. Increasing tractor speed in the FWD system increased tractor wheel slip and soil 
compaction. In addition, increasing soil moisture content resulted in an increase in soil compaction, and this 
event was intense in fine soils like clay loam. It was found that adaptive neuro-fuzzy inference system (ANFIS) 
higher potential to predict the effect of multiple input variables on soil compaction (R2 =0.99) than regression 
method. According to the standard coefficients of regression models, depth, type of driving system, number of 
passes, moisture content, texture, speed, and inflation pressure were the factors significantly influencing soil bulk 
density, respectively.   

1. Introduction 

Soil compaction has become a challenging issue for most agricultural 
scientists and farmers (Moinfar et al., 2021, Błaszkiewicz, 2019). It is 
due to use of heavy machines to increase productivity has led to subsoil 
compaction and increment in soil compaction that ultimately has led to 
crop yield decrement all around the world. Soil compaction affects many 
physical, chemical, and biological processes in the soil and may cause 
environmental problems (for example, erosion, flooding, and leaching of 
nutrients and pesticides into groundwater) and agronomic issues such as 
decreasing plant growth and yield (Keller and Lamande, 2010; Sprawka 
et al., 2019; Šimečková et al., 2021). The fact that modern agricultural 
operations have increased soil compaction and their destructive effects 

on soil structure and yield necessitates identifying the aggravating fac-
tors and creating models based on these factors to predict soil 
compaction. 

Since soil compaction depends on soil water content, bulk density, 
and texture, it is necessary to achieve a good understanding of the re-
lationships between these factors to define suitable agricultural strate-
gies with respect to climate change. The higher the amount of clay and 
water content, the greater the sensitivity of soils to the pressure applied 
and the more intense the soil compaction. In sandy soils, however, 
compaction is less dependent on water content and more dependent on 
soil bulk density (Saffih-Hdadi et al., 2009; Seehusen et al., 2021). In 
modern agriculture, the majority of agricultural practices, including 
various stages of land preparation, cultivation, and harvesting are 
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carried out by heavy machinery and in each pass through the soil surface 
induces high vertical stress on the soil, thus increasing soil compaction 
(Williamson and Neilsen, 2000). The load applied by the machine to the 
soil is affected by axle load, number of tires, dimensions of tires, wheel 
speed, soil tire interaction, and machine traffic (Sakai et al., 2008). 

The majority of studies conducted thus far have investigated artifi-
cial and natural factors affecting soil compaction, which can be 
employed to create a suitable model to predict soil compaction. In recent 
years, the artificial intelligence (AI) approach has shown its capability to 
model and predict complex systems; therefore, it can be employed as an 
alternative method to physical models not responding well when there 
are numerous input variables (Abbaspour-Gilandeh et al., 2009). Since 
farming systems and technologies, particularly soil tests, are very com-
plex and uncertain, some researchers have used the AI method for 
modeling different components of agricultural systems. 

In a research, the tractor fuel consumption was predicted using 
artificial neural network (ANN) and stepwise regression models. The 
ANN model with six training algorithms was adopted to predict fuel 
consumption. The highest prediction ability was obtained for a network 
with two hidden layers, each having 10 neurons, which employed Lev-
enberg–Marquardt training algorithm. The results showed that the ANN 
model with a determination coefficient of R2 = 0.938 had high potential 
than the stepwise regression model with a determination coefficient of 
R2 = 0.91(). To predict soil compaction in a soil bin, researchers have 
developed a hybrid approach involving ANNs with manifold network 
functions and have employed a meta-heuristic optimization algorithm to 
predict the soil compaction index. The network functions employed 
were the prevailed feed-forward network and the novel cascade-forward 
network algorithms to adopt the multivariable inputs of wheel load, tire 
inflation pressure, number of passes, slip, and speed to estimate soil 
compaction. Each ANN trial was developed by merging with the recently 
introduced evolutionary optimization technique of imperialist compet-
itive algorithm (ICA). The results showed that the hybrid method pro-
vides higher accuracy in predicting soil compaction (Taghavifar et al., 
2013). In order to evaluate the potential of the adaptive neuro-fuzzy 
inference system (ANFIS) in predicting the energy efficiency indices of 
wheel drive, the experiments were conducted in soil bin. Input param-
eters included wheel load, speed, and slip at three levels. ANFIS, along 
with a hybrid method of the gradient descent and the least-squares 
method, was applied to find the optimal learning parameters using 
various membership functions (MFs). The results showed high accuracy 
(MSE= 0.0166 and R2 =0.98) in prediction (Taghavifar and Mardani, 
2013). A model based on the fuzzy logic approach was developed to 
describe the soil fragmentation for seedbed preparation in the compo-
sition of primary and secondary tillage implements of subsoiler, mold-
board plow, and disk harrow. An intelligent model based on the 
Mamdani fuzzy modeling principles was designed to predict soil frag-
mentation during tillage operations. The model inputs included soil 
moisture content, tractor speed, and soil sampling depth. The fuzzy 
model consisted of 50 rules, and three parameters of root mean square 
error (RMSE), relative error (e), and determination coefficient of R2 

were used to evaluate the fuzzy models. The values of 0.167%, 3.95%, 
and 0.988% were calculated, respectively. It was found that the fuzzy 
models can be used as a method for predicting soil fragmentation with 
high precision during tillage practices (Abbaspour-Gilandeh and Sedghi, 
2015). Carman (2008) developed a model based on Mamdani approach 
fuzzy modeling principles to predict changes in soil compaction due to 
wheel traffic. Mean relative error of the values measured and predicted 
was 3.35% for penetration resistance, 7.76% for tire inflation pressure, 
and 2.98% for bulk density. Furthermore, Marakoglu and Carman 
(2010) developed a model based on Mamdani approach fuzzy modeling 
principles for the fuzzy knowledge-based model to predict soil loosening 
and draft in tillage. Mean relative error of the values measured and 
predicted was 2.41% for soil loosening and 2.68% for the draft 
requirement. 

In engineering science, ANFIS is a technique applied to solve 

complex and nonlinear problems such as water, plants, and air (Mar-
akoglu and Carman, 2010; Arkhipov, 2008). ANFIS is able to find 
non-linear relationships between the inputs and outputs of a problem 
(Naderloo et al., 2012). Fuzzy systems and ANNs have their own ad-
vantages and disadvantages. Fuzzy systems are capable of using human 
languages and experiences while they are not able to learn them (Bur-
agohain and Mahanta, 2008). In other words, fuzzy systems cannot be 
trained using observational data. It should be noted that ANFIS does not 
provide satisfactory results under unanticipated conditions (Dehnavi 
et al., 2015). However, ANNs have the ability to self-learn using the 
datasets. ANNs are non-explicit and cannot use human languages. On 
the other hand, ANNs need a wide range of experimental input and 
output data for their successful execution (Metin and Murat, 2008). 
Although ANN is a powerful technique for modeling various problems in 
the world, it has its own weaknesses. If the input data are ambiguous or 
uncertain, a fuzzy system like ANFIS might be a better option (Tagha-
vifar and Mardani, 2014). 

This paper attempted to focus on the practical aspects of ANFIS 
modeling of which, in practice, engineers need to be aware to build a 
more accurate and efficient model. There are five important and effec-
tive factors in ANFIS modeling, which are as follows: type of network 
creation (Grid Partition or Sub Clustering), type of input fuzzy sets, 
number of input fuzzy sets, type of fuzzy output sets, and optimization 
methods. 

1. In the Grid Partition method, the range of each input is divided 
into equal intervals, and one rule is created in each multidimensional 
space resulting from the combination of different inputs. This method of 
creating a network is suitable when input data are distributed at regular 
intervals with the same size and there is a low number of inputs; how-
ever, by increasing the number of inputs, the combined spaces resulting 
from these inputs increase and, therefore, the number of rules increases, 
causing the complexity of the system (Ay and Kisi, 2014). 

In the Sub Clustering method, data mining is initially performed on 
the data sets. For each input, the interval with more data is identified. 
Instead of the inputs divided into intervals of equal size in areas with 
more data, additional membership functions are created with a smaller 
size, while in areas with fewer data, fewer membership functions are 
created. In this method, the multidimensional spaces resulting from the 
combination inputs with more data are split into clusters. Fuzzy rules are 
created for clusters rather than each multi-dimensional space, but they 
are not created in empty spaces of data. Accordingly, in this method, 
fewer rules are created and the complexity of the system is reduced. This 
method will be useful when there are more data distributed in irregular 
spaces and there is practically a nonlinear relationship between the in-
puts and the output. 

2. Type of input fuzzy sets (membership functions): The fuzzy logic 
foundation is based on the fuzzy set theory. This theory is a general-
ization of the classical theory of sets in mathematics. In the classical 
theory of sets, an element is or is not a member of a set. In point of fact, 
the membership of the elements follows a zero and one binary pattern. 
However, the theory of fuzzy sets extends this concept and proposes a 
gradual membership. Thus one element may be to some extent, not 
perfectly, a member of a set (Takagi and Sugeno, 1985). In this theory, 
the membership degree of the elements of the set is determined by the 
fuzzy function and its value is between zero and one. There is no definite 
way to select membership functions, but considering the distribution of 
the input dataset, it may be possible to determine the more efficient 
membership functions. Moreover, when there is an alternative rela-
tionship between an input and its output in the vicinity of the points 
where the functional alternation alters, the trapezoidal and 
generalized-bell membership functions can be more appropriate. This is 
due to the more uniform effect of the elements in the vicinity of the 
alternating points. 

3. The number of membership functions must be determined in such 
a way that no empty spaces are created. In case of existence such spaces, 
the number of membership functions should be reduced so that the 
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domain of the remaining functions increases and it is possible to use the 
domain of the neighboring elements to study the effects of these ele-
ments on the output. The number of these functions should not exceed 3 
because the number of rules and the complexity of the system would 
increase. On the other hand, if the number of these functions is less than 
three, it will increase the effectiveness of the adjacent elements, possibly 
leading to system error in prediction. 

4. Type of outputs fuzzy sets includes two types of linear and con-
stant functions. ANFIS considers a function for every rule that has built 
in the spaces of the combination of inputs. This function can be a con-
stant number, which is most commonly used for a set of inputs that 
produce a constant output in certain intervals due to input changes, or 
this function can be considered as linear combination of input variables. 
In most cases, the use of the linear output function produces better re-
sults (Dehnavi et al., 2015). 

5. Optimization method: The main training method in this system 
was the error propagation method obtained in combination with the 
least-squares error and the hybrid combination method. In each training 
round and when moving forward, the outputs of the nodes were nor-
mally calculated up to the fourth layer and then the result parameters 
are calculated by the least-squares error method. In this research, after 
calculating the error in return using the descending slope algorithm of 
error, the error value was distributed to the inputs and the parameters 
were corrected. Since various field users do not have expertise and ca-
pabilities necessary for changing the optimization practices, expertise 
beyond the users’ needs is required. The purpose of this study was to 
develop comprehensive models for predicting soil compaction based on 
input variables, including tractor driving system (4WD-FWD-RWD), 
depth, water content, soil texture, wheel speed, tire inflation pressure 
and number of passes using ANN, ANFIS, and stepwise regression 
techniques. 

2. Materials and methods 

The experiments were conducted in a completely randomized design 
with three replications. The treatments included different travel speeds 
of 1.26, 3.96, and 6.78 km/h, tire inflation pressures of 170, 200, and 
230 kPa, moisture content of 10%, 15%, and 20% (d.b), slip as an index 
of the driving system of the tractor (four-wheel drive, rear-wheel drive, 
and front-wheel drive), number of passes (1, 5, and 9), and two soil 
textures of clay-loam, loam, and sandy-loam at the depths of 10, 20, 30, 
and 40 cm. Table 1 presents the properties tested soil. The percentage of 
clay, silt and sand particles can be used to represent the soil texture in 
the anfis model, however, this method increases the number of model 
inputs and consequently will increase the model complexity. Therefore, 
to solve this problem, a statistical measure called geometric mean 
diameter(dg) was used as a representation of soil texture. How to 
calculate this criterion has been described in detail in several articles 
(Shirazi and Boersma, and Dashtaki and Homaee, 1984, 2004). 

The Goldoni 240 tractor (4WD) was used for testing. Table 2 presents 
the technical characteristics of this tractor (Fig. 1). All machines work in 
three driving system types of four whhel dive, rear wheel drive and front 
wheel drive. Four-wheel drive, also called 4WD, refers to a two-axled 
vehicle drivetrain capable of providing torque to all of its wheels 
simultaneously. Rear-wheel drive (RWD) is a form of engine and 

transmission layout used in motor vehicles, where the engine drives the 
rear wheels only. Front-wheel drive (FWD) is a form of engine and 
transmission layout used in motor vehicles, where the engine drives the 
front wheels only. 

In four-wheel drive tractors unlike two-wheel drive tractors, in order 
to achieve the best traction performance and the use of traction capacity, 
the tractor’s weight should be distributed equally on both axles. The 
static weight on the front and rear axle of this tractor is 705 and 360 kg, 
respectively, which is determined by the manufacturer. While in traction 
operations, the dynamic weight of the wheel is important. The dynamic 
weight of the axes is the total of static weight of the axle and the weight 
transfer due to the application of the traction force. The dynamic load on 
wheels is calculated by the following equations: 

Wdr = Wsr + P(
H
X
) (1)  

Wdf = Wsf − P(
H
X
) (2)  

Where: Wsr the static load on rear tires (N), H is the drawbar height(m) 
and X is the wheel base, (m).wdf is the dynamic load on rear tires 
(N), Wsf is the static load on front tires (N), wds the dynamic load on 
front tires (N), P is draft (N). 

According to the weight transfer carried out during the traction 
operation, the dynamic weight percentage on the front and rear axle of 
this tractor is 48% and 52%, which is very close to the recommended 
values by Barger et al. (1963). 

Table 1 
Tested Soil properties.  

Soil texture Sand Silt Clay Bulk 
density 
(kg⋅m− 3) 

Cone index 
(kPa) 

dg 

(mm) 

Clay loam  20  30  50  1010  750  0.0154 
Loam  46  30  24  1102  820  0.0851 
Sandy – 

loam  
73  17  10  1300  950  0.246  

Table 2 
Tractor characteristics.  

Specifications Unit  value 

Engine power kW  30.8 
Static weight on each front tire kg  705 
Static weight on each rear tire kg  360 
Wheelbase m  1.055 
Center-to-center lateral spacing of front 

tires 
m  0.75 

Center-to-center lateral spacing of rear 
tires 

m  0.75 

front tire –  7.50R-16′′

rear tire –  7.50R-16′′

Tread Depth(mm) Standard Rim Section width 
(mm) 

Overall Diameter(mm) 

25 5.00 F、6LB 205 810  

Fig. 1. Goldoni tractoe moves over the soil surface (left), a scheme of diged soil 
profile afte the tractor pass(Right top)Placement of strain transducers including 
endplates inside soil profile in longitudinal, lateral and vertical directions. 
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The driving system is a category variable, and because fuzzy logic is 
expressed in terms of linguistic and continuous concepts, the use of the 
driving system as a variable undermine the modeling process. Research 
has shown that slippage is strongly influenced by the driving system 
(Moinfar et al., 2020). Therefore, to solve the problem, slip, which is a 
continuous variable, was used as an alternative to the driving system. 
Since the type of driving system is not a numerical property and 
modeling requires numerical values. The tractor-implement system slip 
cab be an appropriate index of driving system type. In order to involve 
the effect of the driving system in the modeling process, the slip value of 
the tractor in different driving systems was used. With considering all 
other conditions constant, three values of 14.9%, 22% and 24.8% were 
computed for four-wheel drive, rear wheel drive and front-wheel drive 
systems. The lowest value was obtained using 4WD and the highest 
value was related to FWD system. 

To evaluate the effect of driving system type, the front and rear 
differentials of the tractor were disabled for the related experiments so 
that the tractor could operate in front- or rear-wheel drive. A fuel tanker 
was connected to the drawbar connection of the tractor to create 8 kN as 
a draft force which is usually applied to this type of tractor. 

The maximum pulling draft of the Goldoni tractor is 10 kN, hence the 
draft applied to the tractor was 8 kN in order to be used at different 
speeds. Therefore, the pull/weight levels applied in this research were in 
accordance with the manufacturer’s recommendations. The recom-
mended inflation pressure for a 7.5R-16 ”tire is 200 kN, so the 170 and 
230 kN were slightly lower and higher than the recommended value 
which were selected to investigate and model the effect of inflation 
pressure on the soil compaction. Since tillage by moldboard plow is the 
most common field operation in most parts of the world, the travel speed 
range were within the recommended values for this operation (Al-Su-
haibani and. Ghaly, 2010 and Mattetti et al., 2017). 

The wheel speed of the tractor was measured by an inductive prox-
imity sensor (pr12–2dn made by autonics) mounted in line with the 
outer edge of a 34-tooth sprocket which was fixed inside the rear wheel 
(Fig. 2). The sensor detects passing of each tooth during the wheel 
rotation such that with each full rotation of the gear or the rear wheel, 
digital displayer (MP5W-44 made by autonics) of pulses meter which 
attached to a magnetic sensor displayed the number of gear teeth. This 
number was divided by 34 to calculate the wheel rotation. The passed 
distance was calculated by having a perimeter of the rear wheel. The 
dynamic rolling radius was determined and then considered in 
computing rear-wheel perimeter. The actual speed of the tractor 
computed by measuring the time required to pass a determined distance 
by a stopwatch. The following equation was used to calculate the slip 
percentage (Damanauskas and Janulevičius, 2015): 

S(%) = 1 −
va

vt
× 100 (3)  

Where: va = actual velocity, m s− 1; vt = theoretical velocity, m s− 1. 

In order to compare the compaction caused by different treatments, 
changes in bulk density were used as benchmark comparisons. In order 
to obtain soil bulk density, samples from different depths were taken 
using a standard sampling cylinder and after they were dried in an oven, 
soil bulk density was determined. Three soil samples were taken from 
each target depth. To evaluate the accuracy of the values obtained 
through the cores, three displacement sensors were placed in horizontal, 
lateral, and vertical directions under tire path on one side of the tractor 
at the soil depth of 30 cm (Fig. 1). Tractor used in this research is a 
garden tractor with a spacing of 80 cm between wheels, which is less 
than the distance between the trailer wheels (240 cm), resulting in a 
minimum distance of 80 cm between the sampling point and the trailer 
wheels and the trailer wheels were not crossed on the surface of the soil 
and their effect were not significant. To reach to required soil moisture 
by weighting water spray in different times of mixing operation the 
required water sprayed on the soil during mixing and then was filled into 
the pit again (Fig. 1). 

To prevent moisture evaporation, all tests were related to a deter-
mined value of moisture were conducted consecutively at definite time 
period in a day. Also temperature was 17–20 ◦C and the soil surface kept 
covered with a plastic sheet to minimize soil moisture loss when we were 
not working on that particular part of the soil, hence no significant 
evaporation was observed. 

In order to measure soil displacement, a differential transducer with 
linear variation (model DHL-A-50), the sensitivity of 3.64 mv/v, and the 
maximum displacement of 50 mm was employed. Two plates were 
installed at the endpoints of the transducer to transfer soil compression 
or tension pressure to the transducer for measuring soil displacement 
accurately. All data were logged to a laptop via a data logger (Data Taker 
800). 

Bulk density of the loose soil was initially 1102 kg⋅m− 3. To deter-
mine the changes in soil density using the displacement transducers, the 
mass of soil located inside an imaginary cube which dimensions consist 
of the three transducers was calculated from Eq. (4). 

m = ρ1V = ρ1lx1ly1lz1 (4)  

Where.  

m = soil mass, kg⋅                                                                                  

ρ1 = initial soil density, kg⋅m− 3⋅                                                               

lx1 = initial length of longitudinal transducer, m⋅                                         

ly1 = initial length of lateral transducer, m⋅                                                 

lz1 = initial length of vertical transducer, m⋅                                               

Assuming a constant mass of soil between the end plates installed on 
the displacement gauges, final soil density was computed from Eq. (5). 

ρ2 =
m
V
=

m
l2x l2y lz2

(5)  

Where:  

ρ2 = final soil density, kg⋅m− 3⋅                                                                 

lx2 = final length of longitudinal transducer, m⋅                                           

ly2 = final length of lateral transducer, m⋅                                                   

lz2 = final length of vertical transducer, m⋅                                                 

All of the tests were performed in a canal with dimensions of 3 m 
long, 1 m wide, and 0.6 m deep. To create uniformity in testing and 
prevent errors caused by variations in soil texture, after that each test 
soil was removed from the soil bin and was sieved to eliminate 
compaction caused by previous tests, then it was refilled into the canal. 
The soil inside the pit was compacted in layers of 10 cm using a hand 

Fig. 2. Wheel speed transducer for measuring the tire rotation.  
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roller to a mass of 500 kg to eliminate the looseness of the soil and reach 
the desired compaction. Soil compaction in each layer was measured 
using a conical index. The cone index of plowed soil was considered as a 
criterion for soil compaction. 

The basis of the network developed using input parameters was 
default curve fitting of MATLAB 2016 which is the most optimal method 
for building the network. Feed-forward backpropagation algorithm was 
employed to construct an ANN-based model. The training function used 
in the network was a trailm which was selected by trial and error method 
from the existing functions to achieve the best performance. The adap-
tion learning function was of the learngdm type. There were 2 hidden 
layers and 10 neurons were used in the first layer to run the network. 
Moreover, three types of transfer functions, including tangent hyper-
bolic conversion, sigmoid (tan sig), and linear motion (pure line) func-
tion among layers were used for ANN models. 

ANFIS creates a fuzzy inference system using a set of input and 
output data. The membership function parameters of this system were 
adjusted through the post-propagation algorithm or its combination 
with the least-squares method. This operation allows the fuzzy system to 
learn its structure from the data set. The adaptive neuro-fuzzy inference 
system consists of two neural and fuzzy networks and has the benefits of 
both techniques (Kaveh et al., 2020). 

In this research, a model was developed based on seven input factors, 
including soil texture, depth, slip (as an index of driving system type), 
water content, inflation pressure, number of passes, and speed in ANFIS 
to predict bulk density. The Grid Partition structure was chosen to create 
the network. Four types of triangular, trapezoidal, Gaussian, and 
generalized-bell membership functions were considered as membership 
functions to represent the inputs. Due to the large number of inputs, the 
number of membership functions for each input was considered the 
minimum possible value of 2 to prevent the creation of more rules and 
the complexity of the system. The output membership function in this 
network was linear. 

The hybrid optimization method was used for network training. The 
number of rules created by the network was 128 which would increase 
up to 2197 when using 3 membership functions for each input. The key 
to the success of the fuzzy theory is that to predict an object, two 
membership functions overlapping in the set of the input space can be 
used simultaneously. Therefore, in order to improve the system accuracy 
and reduce the prediction error, it is not necessary to increase the 
number of membership functions and create more rules; rather, the 
membership functions should overlap more so that each object can be 
supported at least by two rules. Since there was a high number of rules 
created, Table 3 presents only a few of them for a better understanding 
of how the model was developed by ANFIS. These rules were made based 
on the fuzzy type of Takagi-Sugeno-Kang or TSK. In this system, the 
priori part (if-then) was fuzzy rules, but the resultant part was non-fuzzy 
and was a linear combination of input variables. The range of all inputs 
was divided into two parts: the low region with the membership func-
tion of L and the greater area with the membership function of H. 
Regression models use only one particular equation to predict the 
output, but the ANFIS model uses different equations to predict output 
in different intervals. The purpose of Table 3 is to provide different 
regression equations for different intervals, so that the reader can 

understand clearly the better ability of the ANFIS model in predicting 
output in comparison to the regression model. 

When implementing the network, the rules were activated, each 
predicting a value (Fig. 3). 

To calculate the final output, the weight of each rule was determined. 
The weight was calculated in such way that, in each rule, the mem-
bership degree of the input signal in the membership functions of each 
variable was determined and their minimum value was considered as 
the weight of the rule. Fig. 4 schematically illustrates this for a network 
with two inputs. Finally, the final output of the model was calculated by 
Eq. (6). 

f =
w1f1 + w2f2

w1 + w2
(6)  

Where f1 and f2 are linear functions related to rules 1 and 2, respectively 
and w1and w2 are the weights corresponding to each rule. 

Two statistical parameter were selected to analyze the performance 
and efficiency of statistical models: the coefficient of determination (R2) 
and Mean absolute percentage error (MAPE), which are commonly used 
by various researchers (Arkhipov et al., 2008). MAPE as a measure of 
accuracy in a fitted series value in statistics was also used for comparing 
the prediction performances of the models. The coefficient of determi-
nation (R2) of the linear regression line between the predicted values of 
the model and the desired output was computed by Eq. (7): 

R2 =

∑N

i=1
(Ymeasured − Ypredicted)

2

∑N

i=1
(Ymeasured − Ypredicted)

2
(7)  

3. Results and discussions 

A number of models were developed based on ANN, ANFIS, and 
stepwise regression techniques to predict the bulk density caused by 
natural and artificial factors. Among the developed models, Table 4 
presents the models with a high determination coefficient of R2 to 
compare their performance. ANFIS models showed the least mean ab-
solute percentage error (MAPE) and a high determination coefficient of 
R2 = 0.99. Stepwise regression model showed a high MAPE and the 
lowest determination coefficient of R2 = 0.87. The neural network 
model revealed slightly weaker performance in comparison with the 
ANFIS models. 

It is clear that the ANFIS and ANN models have a high capability of 
R2 ≥ 0.99 to predict bulk density due to the large number of input data 
(2187). However, due to the large number of input parameters (7 in-
puts), the regression model showed a low capability of R2 = 0.87 to 
predict the soil bulk density. 

Comparison of the performance of the models showed that the ANFIS 
model, compared to the ANN and regression models, had high ability 
and accuracy in estimating the bulk density value. Therefore, the ANFIS 
model provided much closer data to the data measured compared to the 
ANN and regression models (Table 5). In addition, the deviation be-
tween the values measured and those predicted was calculated and 
plotted. the standard deviation of the values predicted by the ANFIS 

Table 3 
A part of the rules in the model.  

Rules Input variables Linear output function (%BD) 

dg depth slip wc,% IP pass speed 

Rule 1 L L L L L L L BD= 0.03376dg − 0.003703d − 0.01321 s − 0.00796w + 0.003245i − 0.02092p + 0.04623sp − 0.2575 
Rule 10 L L L H L L H BD= − 0.3556dg+ 0.009901d- 0.2217 s + 0.02417w − 0.01627i+ 0.01764p − 0.007478sp − 0.02756 
Rule 22 L L H L H L H BD= − 0.108dg+ 0.2193d − 0.9922 s − 0.06009w+ 0.1347i − 0.3192p − 0.2048sp − 0.04611 
Rule 72 H L L L H H H BD= 0.04812dg − 0.02813d − 0.6039 s − 0.09089w+ 0.03411i − 0.02871p − 0.01609sp − 0.001764 
Rule 101 H H L L H L L BD= 0.04521dg+ 0.001689d − 0.01066 s − 0.005427w+ 0.002055i − 0.01029p − 0.005584sp − 0.124 
Rule128 H H H H H H H BD= 0.1642dg+ 0.0813d+ 0.2045 s + 0.1777w − 0.06094i+ 0.0377p+ 0.05008sp+ 0.01024  
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model (ranging from 0.027 to − 0.015) was much lower than that of the 
values predicted by the ANN model (ranging from 0.029 to − 0.03) and 
the regression model (ranging from 0.11 to − 0.09). 

Table 6 presents the statistical characteristics of the step-by-step 
regression model for predicting bulk density. The regression model, in 

comparison with the ANFIS and ANN models, has weaker performance 
in prediction (R2 =0.88). However, the regression model presented 
valuable advantages in comparison to the ANFIS and ANN models. The 
ANFIS and ANN models do not provide a specific relationship for 
modeling the output variable and an indicator for comparing the effect 

Fig. 3. ANFIS rule viewer and rules of the soil compaction models.  

Fig. 4. The Takagi–Sugeno fuzzy inference system.  

Table 4 
The characteristics of the best structure of developed ANFIS, ANN and regression architectures; the boldfaced values show the outperforming models.  

Model Network type Training function Adaption learning function Transfer function MAPE (%) R2 

ANN feed-forward backprop trailm learngdm logsig 7.3 0.9913 
ANFIS Type of MF Number of MF Optimization method MAPE R2  

Input Output Input Epo  
Trimf Linear 2 2 2 2 2 2 2 20 Hybrid 5 0.9957  
Gaussmf Linear 2 2 2 2 2 2 2 20 Hybrid 4.6 0.9962  
Tramf Linear 2 2 2 2 2 2 2 20 Hybrid 5.2 0.9938  
Gbellmf Linear 2 2 2 2 2 2 2 2 20 Hybrid 4.7 0.9961 

Regression C= 0.1 − 0.267 ×ST − 0.00616 ×D + 0.00788 ×S + 0.00906 ×M+ 0.000395 ×IP + 0.0127 ×P − 0.00512 ×V 21 0.8768  
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of each input variable on the output variable. The regression model 
directly deals with the effect of each of the factors and tries to present a 
model in which the importance and impact of each of the factors is 
clearly evident. According to the standard coefficients listed in Table 6, 
the depth, slip (driving system type), number of passes, water content, 
texture, speed, and inflation pressure indicated the greatest effect on the 
soil bulk density, respectively. 

Based on the results of Table 6, the slip has a positive effect on the 
soil bulk density, as shown in Fig. 5. According to this figure, the bulk 
density increased significantly by increasing slip in all depths. The trend 
of these changes was very intense and clear at the depth of 10 cm, but by 
increasing depth, the effect of slip was reduced and increment trend in 
bulk density was slow. The maximum bulk density occurred at the depth 

of 20 cm and the slip of 33%. The higher slip is related to the FWD 
system and the low slip is associated with the 4WD system. Many re-
searchers have reported that an increase in slip leads to an increase in 
surface soil compaction. This could be due to the increasing time of 
wheel travel on the soil and the blows of wheel tread (Botta et al., 1999). 
As shown in Fig. 5(b), a higher density can be prevented by increasing 
the speed. However, when the slip rises, which is related to the FWD 
mode, the increasing speed cannot prevent soil compaction. Because 
travel speed cannot increase without slip increment, thus increasing the 
speed leads to higher slip and soil compaction. Reducing soil compaction 
by increasing speed has clearly been observed in many studies using 
4WD of RWD systems (Carman, 2008; Shahgholi and Abuali, 2015). 

Fig. 6(a) shows that the finer soil texture of clay loam soil results in 
high compressibility, particularly in higher moisture content. Fine- 
textured soils are very compressible and by applying force to the sur-
face of these soils, there is a greater displacement in them. As a result, 
the increment in BD is higher than that of the coarse textures. The reason 
for this behavior can be attributed to the fact that fine-textured soils 
have higher adhesion properties and their particles tend to stick together 
under the influence of moisture (Jain et al., 2010). Therefore, when the 
pressure is removed from fine-textured soils, their reversibility is lower 
than other soils and they become denser. Saffih-Hdadi (2009) stated that 
the reason for this behavior is the cohesion among the particles of the 
soil, which is aggravated by increasing moisture. The pressure applied 
causes the soil particles to compress into each other and moisture pre-
serves this position. They reported that compaction in the cohesion and 
heavy soils rises by increasing moisture. Other researchers have re-
ported such a process (Grecenko, 2016; Gupta et al., 1989; Horn et al., 
1995). 

The interaction between inflation pressure and depth in Fig. 7(a) 
shows that high inflation pressure destroys the soil and increases soil 

Table 5 
The standard deviation of predicted values by ANFIS, ANN and regression model in different working conditions.    

The average of standard deviation The max of standard deviation The min of standard deviation   

Depth 

Soil texture  20 cm 30 cm 40 cm 20 cm 30 cm 40 cm 20 cm 30 cm 40 cm 

Clay – loam Regression 0.0364 0.022 0.0251 0.111 0.0506 0.0831 -0.0899 -0.1344 -0.0819 
ANN 0.0076 0.006 0.0063 0.028 0.0340 0.0307 -0.0300 -0.0875 -0.0234 
ANFIS 0.0044 0.005 0.0042 0.027 0.0248 0.0219 -0.0154 -0.0543 -0.0191 

Loam Regression 0.0323 0.019 0.0258 0.078 0.0372 0.1006 -0.0976 -0.1252 -0.0795 
ANN 0.0077 0.006 0.0065 0.068 0.0236 0.0356 -0.0217 -0.0831 -0.0248 
ANFIS 0.0041 0.005 0.0044 0.024 0.0221 0.0315 -0.0164 -0.0606 -0.0236 

Sandy – loam Regression 0.0303 0.021 0.0311 0.067 0.08216 0.1439 -0.1056 -0.0647 -0.0642 
ANN 0.0074 0.005 0.0063 0.025 0.0202 0.0261 -0.0336 -0.0217 -0.0250 
ANFIS 0.0042 0.005 0.0033 0.017 0.0221 0.0164 -0.0170 -0.0290 -0.0156  

Table 6 
Statistical characteristics of stepwise regression model for %BD based on slip, 
pass, texture, speed, water content, depth and pressure.  

Model Unstandardized 
Coefficients 

Standardized 
Coefficients    

B Std. 
Error 

Beta t Level of 
Significance 
(Sig) 

(Constant) 1.00 0.354  13.312 0.00 
Depth -0.006 0.000 -0.507 -67.483 0.00 
Slip 0.008 0.000 0.406 44.627 0.00 
Pass 0.013 0.000 0.418 55.523 0.00 
Water 

content 
0.009 0.000 0.373 49.598 0.00 

Texture -0.267 0.008 -0.266 -35.404 0.00 
Speed 0.005 0.000 -0.116 -13.370 0.00 
Pressure 0.0035 0.000 0.098 10.469 0.00 

B- linear regression equation constants coefficient. 

Fig. 5. Interaction: a) Slip × depth b) Slip × Speed on the bulk density.  
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compaction, but it influences topsoil layers more significantly, and by 
increasing depth, the adverse effects of inflation pressure disappear. At 
the depth of 40 cm, bulk density is almost the same in all inflation 
pressures, while at the depth of 10 cm, there is a significant difference in 
bulk density between the different tire inflation pressures. The reason 
for this difference could be the stress that wheels apply to the topsoil, but 
the rate of stress transmission to the subsoil is negligible. 

As Arvidsson et al. (2011) reported that the difference between the 
stress exerted on the soil at the depth of 40 cm as a result of moving a 
single wheel, double wheel tractors, and tracks is almost small. How-
ever, the stress is altered by increasing the load applied to the wheel 
drive, reflecting the fact that the force applied to the soil has the greatest 
impact on compaction in the subsoil. It was found that the compaction of 
the topsoil depends, to a large extent, on the ground pressure, but the 
compaction of the subsoil is related to the load applied to the drive 
wheel (Botta, 1999). Moreover, according to Fig. 7(b), it was indicated 
that the first pass has a significant effect only on the topsoil, but when 
the number of passes increases, the pressure applied to the topsoil is 
slowly transferred to the subsoil and compresses it. This reflects the fact 
that subsoil compaction, unlike topsoil compaction, occurs over time. A 
similar trend was reported in other researches (Shahgholi and Abuali, 
2015; Ghadernejad et al., 2015). 

Numerous studies have shown that with increasing depth, the most 
important factor affecting soil compaction were the weight of the 
tractor, tire’s slip, type of drive system and tire inflation pressure (Wong, 
1989, 2022). Also it was found that that at low forward speeds, the soil 

compaction was more affected by the weight of the tractor for a longer 
period of time. In fact, low speed has a similar effect to weight increment 
and causes pressure to be transferred to subsoil layers and subsoil 
compaction occurrs (Pulido-Moncada, and Graves et al., 2019, 2015). 
The study of the effect of number of passes on soil density showed that 
increasing the passage has a strong effect on the compaction of subsoil, 
while it does not affect the surface layers(Han et al., 2009; Gerasimov 
and Katarov, 2010; Shaheb et al., 2021). Fine-textured like clay soils are 
more sensitive to machine passage, and that increasing machine weight 
at high humidity causes compaction in deeper layers(Hamza and 
Anderson, 2005 and Batey, 2009; Hamza et al., 2011). Finally, according 
to the results of previous research and matching them with the results of 
the present research it was concluded that to reduce surface soil density, 
inflation pressure, slip and type of drive system should be considered, 
and to reduce deep soil density, the weight, speed and number of passes 
should be managed. 

4. Conclusions 

1. In the study range, depth and slip had the greatest impact on the 
bulk density, and depth had a negative effect and slip had a positive 
effect on increasing bulk density. The 4WD driving system showed a low 
slip, and soil compaction decreased by increasing speed, while the FWD 
driving system indicated high slip and soil compaction increased by 
increasing speed. It was found the 4WD system is the optimum system 
for agricultural operations because it reduces the effect of agricultural 

Fig. 6. Interaction: a) moisture content × soil texture b) Slip × moisture content on the bulk density.  

Fig. 7. Interaction: a) Depth × inflation pressure b) Depth× pass content on the bulk density.  
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machinery on soil compaction. 
2. Inflation pressure indicated a significant effect on the increment in 

soil compaction in the topsoil. However, in the subsoil, the effect of 
inflation pressure almost disappeared by increasing depth up to more 
than 40 cm. 

3. Increasing moisture content showed a significant effect on 
increasing soil compaction in fine soils like clay loam. At high moistures, 
the maximum compaction occurred on top layers of soil, and by 
decreasing moisture, compaction was transferred to subsoil layers. 

4. Since the effect of multiple inputs was investigated on soil bulk 
density, the ANFIS model showed better performance compared to the 
ANN and stepwise regression models due to the determination coeffi-
cient of 0.99 in predicting the soil bulk density. 
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