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A B S T R A C T

This paper presents a comprehensive analysis of free vibrations and thermal buckling of cylindrical shells with 
variable thickness, formulated based on three-dimensional elasticity theory and the variational principle. The 
governing equations are derived by considering geometric nonlinearities and uniform temperature distribution, 
then solved meshlessly using the Radial Point Interpolation Method (RPIM).The key innovation of this research 
lies in developing an accurate and integrated model that effectively simulates the complex effects of variable 
thickness on the dynamic behavior and thermal stability of shells under various boundary and thermal condi
tions. Numerical results demonstrate that thickness variations significantly influence natural frequencies and 
critical buckling loads, particularly under thermal loading and diverse boundary conditions, where the shell's 
behavior undergoes remarkable changes. A comparison with reference data confirms the accuracy and efficiency 
of the proposed model. This study provides valuable insights for the design and optimization of shell structures in 
thermal environments.

1. Introduction

The analysis of the dynamic behavior and thermal stability of cy
lindrical shells, especially when their thickness is variable, is a signifi
cant challenge in structural engineering [1–3]. These shells, due to their 
widespread applications in industries such as aerospace, energy, and 
marine structures, have always received considerable attention [4–6]. 
Variations in the thickness of these shells can have substantial effects on 
their vibrational properties and thermal stability, making accurate 
analysis crucial for optimizing the design and performance of complex 
structures [7–9]. Given the limitations of existing analytical models in 
predicting the behavior of shells with variable thickness, the use of 
advanced numerical methods, such as meshless techniques, in simu
lating the behavior of these shells under real-world conditions, espe
cially under varying temperatures and complex loading scenarios, is of 
great importance.

In most studies, cylindrical shells have been analyzed using simpli
fied theories since the use of three-dimensional elasticity theory leads to 
mathematical complexities in the governing equations [10–12]. While 
the accuracy of simplified theories is acceptable for thin shells, these 
theories lack sufficient accuracy for thick shells, requiring the use of 

higher-order theories [13–15]. Even for achieving acceptable precision, 
the use of three-dimensional elasticity theory is essential [16–18]. In the 
existing literature, various but limited theories have been proposed to 
explain the behavior of cylindrical shells with variable thickness. Wang 
et al [19] developed a dynamic model based on the precise transfer 
matrix method to investigate the vibrational behavior of cylindrical 
shells with variable thickness, observing this behavior by solving a set of 
first-order differential equations. Duan and Koh [20] presented analyt
ical solutions for the transverse vibrations of cylindrical shells with 
uniformly varying thickness in arbitrary power-law forms, expressed in 
terms of generalized hypergeometric functions due to the forces acting 
in the transverse direction. Jiaet al [21] examined the free vibrations of 
stepped cylindrical shells with thickness variations in both the axial and 
circumferential directions based on Reissner’s shell theory and a new 
symplectic mechanics approach. El-Kaabazi et al [22] studied the dy
namic stiffness equations for cylindrical shells with variable thickness 
under the assumptions of Donnell, Timoshenko, and Flügge shell the
ories. For instance, Zhang et al [23] investigated vibration mitigation of 
doubly curved composite panels under transient dynamic loading by 
integrating advanced control schemes with optimization algorithms as 
well as machine learning techniques. Khoshgoftar et al [24] utilized 
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second-order shear deformation theory as a higher-order shear defor
mation theory to analyze a functionally graded axisymmetric cylindrical 
shell with variable thickness.

A wide range of analytical, semi-analytical, and numerical methods 
have been developed and applied in the literature to investigate the 
vibration behavior of structural systems [25–27]. The finite element 
method is widely employed for vibration and thermal buckling analysis 
of shell structures by discretizing the three-dimensional elasticity 
equations into finite elements, enabling accurate modeling of complex 
geometries, boundary conditions, and thickness variations, and is 
commonly used as a benchmark for validating advanced numerical and 
meshless formulations [28,29]. Tang et al [17] presented a 
semi-analytical solution for analyzing the free vibrations of functionally 
graded cylindrical shells with variable thickness in two directions. In 
this model, the mechanical properties of the shells vary in both the axial 
and thickness directions. Sharafkhani et al [30] investigated the 
nonlinear mechanical behavior of circular functionally graded 
micro-plates subjected to combined electrostatic and mechanical shock 
loadings. Using a Galerkin-based reduced-order model and step-by-step 
linearization, they analyzed dynamic response, stability, and the influ
ence of through-thickness material gradation on vibration characteris
tics. Alam et al [31] investigated the free vibrations of cylindrical shells 
in their study. The impact of various parametric ratios, such as the 
diameter-to-thickness ratio (D/t) and length-to-diameter ratio (L/D), on 
the vibrations of the shells was examined. These analyses were per
formed using the ANSYS Parametric Design Language (APDL) based on 
first-order shear deformation theory (FSDT) for different boundary 
conditions. Ameli-Basiri et al [32] analyzed the free vibrations of closed 
and open cylindrical shells using the state-space transformation concept, 
along with the Differential Transformation Method (DTM). The gov
erning equations for these shells were developed based on Sanders' 
thin-shell theory and then transformed into a set of first-order differ
ential equations, which were solved using the DTM method. Wang et al 
[33] developed a novel method for analyzing the free vibrations of 
moderately thick cylindrical shells. This method incorporates adaptive 
finite elements and crack damage simulation for analyzing natural fre
quencies. In this study, an iterative reverse method and error evaluation 
techniques, along with mesh refinement, were introduced to create a 
computational framework for vibration analysis of cracked cylindrical 
shells. Tong et al [34] proposed an analytical symplectic approach for 
studying the free vibrations of cylindrical shells. In this approach, 
symplectic space was used to systematically derive exact solutions 
without the need for trial functions. Taati et al [35] examined the free 
vibrations of cylindrical shells with variable thickness based on Donnell 
and Love’s theories. They derived the governing equations and associ
ated boundary conditions for these shells and presented a closed-form 
sixth-order frequency equation that investigates the effect of thickness 
variations on the natural frequencies and mode shapes of the shells. 
Grigorenko et al [36] analyzed the free vibrations of elliptical cylindrical 
shells with variable thickness using the modified Timoshenko-Mindlin 
theory. This study examined the effects of cross-sectional deformation, 
thickness variations, material properties, and boundary conditions on 
the natural frequency spectrum of the shells. Golpayegani et al [37] 
performed free vibration analysis of thin cylindrical shells made of 
functionally graded materials with linear thickness variations using 
finite element methods. The results of this study highlight the impact of 
thickness variations and boundary conditions on the natural frequencies 
of these shells. Kim et al [38] analyzed the vibrational behavior of cy
lindrical shells with variable thickness using the Haar wavelet dis
cretization method. They developed theoretical formulations based on 
first-order shear deformation theory (FSDT) for these shells and calcu
lated the natural frequencies and mode shapes. Grigorenko et al [39] 
also investigated the free vibrations of elliptical cross-sectional cylin
drical shells with variable thickness using FEMAP software and the 
NASTRAN solver. These studies have taken significant steps in the 
analysis of vibrations and dynamic behavior of cylindrical shells with 

variable thickness. Each of these works, through the introduction of 
different methods and models, extensively contributes to the design and 
analysis of shell structures and paves the way for future research in this 
field [40–44].

There are various methods available for analyzing shells in this 
domain [45–47], but many of these methods face challenges such as the 
need for complex meshing, high computational complexity, and limited 
accuracy in modeling complex behaviors. In this context, meshless 
methods, such as the radial point interpolation method (RPIM), have 
been introduced as advanced tools for the precise and efficient analysis 
of cylindrical shells with variable thickness. These methods not only 
eliminate the need for meshing but also enable more accurate modeling 
of the structural behavior under non-uniform loading and temperature 
conditions. Li et al [48] presented a comprehensive numerical investi
gation of the free vibration behavior of rotating cross-ply laminated 
combined conical–cylindrical shells subjected to thermal environments. 
Their study employed a meshless Chebyshev-based RPIM within the 
framework of first-order shear deformation theory, accounting for cen
trifugal and Coriolis effects as well as thermal-induced nonlinear strain 
components. The reliability of their approach was demonstrated 
through extensive comparisons with established results, highlighting the 
effectiveness of meshless techniques for coupled shell systems under 
thermal and rotational effects. Liang et al [49] developed a novel 
three-dimensional vibration model for cylindrical shells based on full 3D 
elasticity theory using the Carrera unified formulation. By expanding 
displacement fields through Chebyshev polynomials and Taylor series 
and introducing artificial boundary surface springs, their model ach
ieved high accuracy for arbitrary boundary conditions, as validated 
against finite element and literature results. More recently, other re
searchers have continued to extend advanced numerical frame
works—such as refined meshless schemes, unified formulations, and 
high-fidelity finite element models—to investigate the dynamic 
response of cylindrical and coupled shell structures under varying 
geometrical, boundary, and thermal conditions [50,51]. Li et al [52] 
developed a three-dimensional elasticity-based vibration model for cy
lindrical shells via the meshless method, enabling accurate prediction of 
dynamic behavior under general boundary conditions. Comprehensive 
reviews and recent advances in refined and three-dimensional shell 
theories were summarized by Mahmoud et al [53], highlighting the 
growing importance of 3D formulations for vibration and stability 
analysis. Despite these advances, most existing studies either focus on 
uniform-thickness shells or rely on conventional discretization strate
gies, indicating a clear need for robust three-dimensional and meshless 
formulations capable of simultaneously addressing thickness variation, 
boundary diversity, and thermal effects with verified accuracy.

The main innovation of this paper lies in the use of meshless methods 
for the three-dimensional free vibration analysis of thin and thick cy
lindrical shells with variable thickness under the influence of thermal 
buckling and temperature effects. While traditional methods face 
numerous limitations, this study significantly overcomes these con
straints by employing the RPIM, offering a more flexible and accurate 
approach for modeling complex thickness variations and thermal con
ditions. This innovation has a significant impact on the precise predic
tion of natural frequencies and vibration behavior of cylindrical shells 
with variable thickness under complex thermal conditions, contributing 
greatly to the improved design and optimization of shell structures in 
various industries.

2. Radial point interpolation method (RPIM)

This section provides a concise overview of the RPIM. For more 
detailed explanations, refer to [38]. To interpolate a scalar field η(x) in a 
three-dimensional domain V, N nodes are distributed at positions xi(i =
1, 2, ..., N). In the meshless method, the value of η(x) at any point x is 
approximated using function values from nodes within a local support 
domain around x. Only these nearby nodes influence the interpolated 
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field at that point. This relationship can be expressed as follows: 

η(x) =
∑n

i=1
Φi(x)η̂i = Φ(x)η̂ (1) 

where Φi(x) is the shape function at the ith node that possess the Kro
necker delta property and satisfy the partition of unity. 

Φi
(
xj
)
= δij (2a) 

∑n

i=1
Φi
(
xj
)
= 1 (2b) 

To accurately capture stress gradients induced by axial thickness 
variation and three-dimensional deformation effects, a non-uniform 
nodal distribution is adopted in the present RPIM discretization. In the 
axial direction, the nodal coordinates are generated using a power-law 
stretching function as: 

zi = L
(

i
Nz

)β

, i = 0, 1,…,Nz, (3a) 

where Nz denotes the number of nodes along the axial direction and β is 
a stretching parameter controlling the concentration of nodes. When 
β=1, a uniform nodal distribution is obtained, whereas β>1 results in 
increased nodal density in regions with higher thickness gradients.

For thick cylindrical shells, sufficient resolution through the thick
ness is ensured by adopting a non-uniform nodal distribution in the 
radial direction, given by: 

rj = rin + h(z)
(

j
Nr

)γ

, j = 0, 1,…,Nr, (3b) 

where Nr is the number of nodes in the radial (thickness) direction, rin 
denotes the inner radius of the shell, and γ controls the clustering of 
nodes near the shell surfaces. Larger values of γ provide enhanced res
olution in regions with high through-thickness stress gradients. The 
effectiveness of the adopted nodal distribution strategy is verified 
through the convergence studies reported in the Results section, which 
demonstrate that the computed vibration characteristics are insensitive 
to further nodal refinement.

The support domain is a subregion of the problem domain, centered 
at point x, that can have arbitrary shape and dimensionality. While 
spherical or cubic support domains are most commonly employed, other 
geometries are possible. The shape functions are constructed using 
radial basis functions (RBFs). 

η(x) =
∑n

i=1
Ri(x)ai +

∑m

j=1
Pj(x)bj = RTa + PTb (4) 

In this formulation, Ri and Pi represent the n radial basis functions 
and m polynomial basis functions in the coordinates x, respectively, 
while ai and bi are unknown constants that will be derived later. To 
enhance accuracy and ensure interpolation stability, polynomial func
tions are incorporated into the model. The radial basis functions Ri 
depend on the distance s between the point x and a given node xi within 
the support domain. 

s =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(x − xi)
2
+ (y − yi)

2
+ (z − zi)

2
√

(5) 

Among various radial basis functions, the multi-quadric (MQ) func
tion is adopted in this work due to its favorable properties. 

Ri(x) =
(
s2 + (αcdc)

)q (6) 

where αc, dc and q are shape parameters examined numerically. 

Meanwhile, the polynomial basis functions Pi provide completeness and 
improve conditioning of the system. 

P(x) =
[
1 x y z x2 xy xz … Pm(x)

]
(7) 

In the present RPIM formulation, the multi-quadric (MQ) radial basis 
function is employed, in which the shape parameters αc, dc and q play a 
crucial role in interpolation accuracy and numerical stability. Rather 
than performing a formal optimization, these parameters are selected 
based on a sensitivity-driven convergence and stability criterion, which 
is a common and effective practice in meshless methods.

Substituting Eq. (2) into (4) yields a system of equations that com
bines both radial basis and polynomial terms. This substitution ensures 
compatibility and enforces necessary constraints on the solution. The 
resulting system can be expressed in matrix form as: 

η̂ = R̂a + P̂b (8) 

where 

R̂ =

⎡

⎢
⎢
⎣

R1(x1) R2(x1) … Rn(x1)

R1(x2) R2(x2) … Rn(x2)

… … … …
R1(xn) R2(xn) … Rn(xn)

⎤

⎥
⎥
⎦ (9) 

P̂ =

⎡

⎢
⎢
⎣

1 x1 y1 Pm(x1)

1 x2 y2 Pm(x2)

… … … …
1 xn yn Pm(xn)

⎤

⎥
⎥
⎦ (10) 

Considering Eq. (8), the system consists of n equations with n + m 
unknowns. The required M additional equations are obtained by 
enforcing the polynomial reproduction constraints: 

P̂
T
a = 0 (11) 

Thus, by solving Eq. (8) using Eq. (11), we can express the variables a 
and b in terms of η̂. These expressions can then be substituted into Eq. 
(4) to obtain a set of equations in the form of Eq. (1).

3. Governing equations

Consider an isotropic cylindrical shell with radius r, variable thick
ness h(z) and length L− L0, as depicted in Fig. 1. The thickness variation 
function is defined by h(z)=h0(z/L)p that ho is the thickness at z=L and p 
is the thickness variation parameter. The displacement field is defined in 
cylindrical coordinates, with displacements in the radial r, circumfer
ential θ, and axial z directions: 

u = [ u v w ]
T (12) 

where u, v, and w denote the displacements in the radial r, circumfer
ential θ, and axial z directions, respectively.

The elastodynamic equation of homogeneous and isotropic cylin
drical shell with density ρ is given by: 

Aσ = ρü (13) 

where σ denotes the three-dimensional stress vector expressed in cy
lindrical coordinates, consisting of three normal stress components (σrr, 
σθθ, σzz) and three shear stress components (σrθ, σrz, σθz), and 

σ = [ σrr σθθ σzz σrθ σrz σθz ]
T (14a) 
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A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂
∂r

−
1
r

−
1
r

0
1
r

∂
θ

∂
r

0

0
1
r

∂
∂θ

0
∂
∂r

+
2
r

0
∂
∂z

0 0
∂
∂z

0
∂
∂r

−
1
r

1
r

∂
θ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(14b) 

The equation governing the relationship between stress and strain is 
given by: 

σ = Dε (15) 

where 

ε = εm − εth (16) 

εm = [ εrr εθθ εzz εrθ εrz εθz ]
T (17) 

εth = [ αrr αθθ αzz αrθ αrz αθz ]
T
= αΔT (18) 

α = [ α α α 0 0 0 ]
T (19) 

where ΔT represents the temperature variation of the shell from the 
reference temperature to the buckling point, and α is the coefficient of 
thermal expansion and εm and εth is the mechanical and thermal strain 
respectively.

In this study, the temperature change ΔT is assumed to be uniform 
throughout the shell domain. Consequently, the thermal strain vector is 
spatially constant and expressed as εth=αΔT, where α denotes the co
efficient of thermal expansion. Under this assumption, thermal stresses 
are induced only through the mechanical constraints imposed by the 
boundary conditions, and no temperature gradient is considered in 
either the thickness or axial directions.

The equation that defines the relationship between strain and 
displacement fields is expressed as follows: 

ε = Lu (20) 

The operator matrix is expressed as follows: 

L =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂
∂r

0 0

1
r

∂
r∂θ

0

0 0
∂
∂z

0
∂
∂z

∂
r∂θ

∂
∂z

0
∂
∂r

∂
r∂θ

∂
∂r

−
1
r

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(21) 

It is supposed that interpolation for a specific point in the shell is 
done using n nodes in the support domain of that point: 

u = Φû (22a) 

û = [ u1 v1 w1 … un vn wn ] (22b) 

Here, Φ represents the shape function matrix of the RPIM. 
Substituting Eq. (22) into Eq. (20) results in: 

ε = LΦû − αΔT = Bû − αΔT (23) 

here, B = LΦ represents the strain-displacement operator matrix. By 
substituting Eq. (23) into Eq. (17), we obtain: 

σ = DBû − DαΔT = σm − σth (24) 

The displacement fields for the cylindrical shell with variable wall 
thickness can be expressed as: 

u(r, θ, z, t) = U(r, z)cos(mθ)eiωt

v(r, θ, z, t) = V(r, z)sin(mθ)eiωt

w(r, θ, z, t) = W(r, z)cos(mθ)eiωt
(25) 

The circumferential dependence of the displacement components is 
expressed using orthogonal trigonometric functions, with u and w 
expanded in terms of cos(mθ) and v in terms of sin(mθ). This choice 
ensures periodicity and orthogonality of circumferential modes and 

Fig. 1. Axial section of cylindrical shell with variable thickness.
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represents an equivalent modal description. The coupling between 
circumferential and torsional vibrations is inherently captured through 
three-dimensional strain components included in governing equations.

The displacement field formulation incorporates the circumferential 
mode number m and circular frequency ω, allowing different vibration 
modes m to be treated independently. For axisymmetric vibration m = 0, 
pure torsional modes can be obtained by interchanging the cos(kθ) and 
sin(kθ) functions in the modal representation. The displacement shape 
function matrix Φ in Eq. (22) is derived from Eq. (1), where the nodal 
displacements û follow the modal decomposition specified in Eq. (25). 
This formulation separates the spatial and temporal components of vi
bration, with Φ capturing the spatial mode shapes while ω governs the 
harmonic time dependence:  

Note that the integration along the θ-direction is carried out 
analytically, as the shape functions are independent of θ.

After discretization using the meshless method and applying Ham
ilton's principle and the calculus of variations, the governing equations 
for free vibration and thermal buckling of cylindrical shells are obtained 
in the form of the following eigenvalue equations: 

Mü + (K+Kth)u = F (27) 

where 

M =

∫

v
ρΦTΦdV (28) 

K =

∫

v
BTDBdv (29) 

Kth =

∫

v
ΦTσthΦdV (30) 

F =

∫

v
ΦTfvdV −

∫

A
ΦTfAdA (31) 

Consequently for free vibration and thermal buckling problems 
without body forces, the standard eigenvalue problem be solved as: 
(
K − ω2M

)
(u) = 0 (32) 

(K − λcrKth)(u) = 0 (33) 

For convenience and comparison purposes, the critical thermal 
buckling temperature is expressed in terms of a nondimensional critical 
temperature parameter, defined as 

λcr =
αEΔTcr

1 − ν (34) 

Here, ΔTcr denotes the critical temperature increment corresponding 
to the onset of thermal buckling, at which the cylindrical shell loses its 
stability under uniform thermal loading. This parameter is adopted 
throughout the thermal buckling results to examine the effects of 
thickness variation, geometric ratios, and boundary conditions in a 
unified and dimensionless manner.

4. Results

This section presents and examines the results of free vibration and 
thermal buckling analyses for cylindrical shells with variable thickness, 
obtained using the RPIM. The effects of thickness variations on natural 
frequencies and critical buckling loads under different boundary con
ditions are first analyzed. Subsequently, the role of uniform temperature 
distributions in the thermal stability of the shells is evaluated. The ob
tained results are quantitatively and qualitatively compared with 
reference data, and the influences of geometric and thermal parameters 
on the dynamic and buckling behavior of the shells are discussed in 
detail. To account for the influence of boundary conditions on the free 
vibration and thermal buckling behavior of cylindrical shells, four 
distinct boundary conditions are considered: clamped (C), simply- 

supported Type-I (SS-SS Type-I), simply-supported Type-II (SS-SS 
Type-II), and free (F). The simply-supported boundary conditions are 
defined as follows: 

u(r, θ, z, t) = v(r, θ, z, t) = 0 σzz(r, θ, z, t) = 0 z = 0, L (35a) 

v(r, θ, z, t) = w(r, θ, z, t) = 0 σrz(r, θ, z, t) = 0 z = 0, L (35b) 

The boundary conditions SS-SS Type-I and SS-SS Type-II correspond 
to two standard idealizations of simply supported cylindrical shells 
commonly adopted in the literature. While both configurations prevent 
rigid-body motion and allow free rotation, they differ in the imposed 
axial displacement and shear traction constraints. These definitions are 
consistent with classical shell vibration formulations and are introduced 
to examine the sensitivity of the dynamic response to boundary 
modeling assumptions.

4.1. Variable thickness thin cylindrical shell

A cylindrical shell with radius r = 1 m, L0=0.8 m thickness h0 = 0.01 
m, and length L− L0=0.2 m is analyzed. The material properties are 
specified as: Young's modulus E=70 GPa, Poisson's ratio ν=0.3, and mass 
density ρ = 2700 kg/m3.

The frequency parameter ωp defined as: 

ωp =
1
π

12(1 − υ2)

(a/L)2
(h0/L)2

(
Ω2(a/L)2

− 1
)

(36) 

where the dimensionless frequency is Ω = ωpL
̅̅̅̅̅̅̅̅
ρ/E

√
.

In the numerical simulations, the stretching parameters controlling 
the non-uniform nodal distribution are selected within the ranges 
β=1.2− 1.8 for the axial direction and γ=1.5− 1.7 for the radial (thick
ness) direction, which are found to provide stable convergence and 
sufficient resolution of thickness-induced stress gradients.

A series of numerical tests were conducted by varying dc and q within 

Table 1 
Sensitivity of MQ–RPIM shape parameters on numerical accuracy and stability.

dc q Conditioning of moment matrix Change in first natural frequency

0.5 1.0 Poor (ill-conditioned) Unstable / non-convergent
1.0 1.5 Moderate < 1.2%
2.0 1.5 Well-conditioned < 0.3%
3.0 2.0 Stable but over-smoothed < 0.5%
5.0 2.0 Stable < 1.0%

[Φ] =

⎡

⎣
ϕ1cos(kθ) 0 0 … ϕncos(kθ) 0 0

0 ϕ1sin(kθ) 0 … 0 ϕnsin(kθ) 0
0 0 ϕ1cos(kθ) … 0 0 ϕncos(kθ)

⎤

⎦ (26) 
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commonly accepted ranges to evaluate their influence on the condi
tioning of the moment matrix and on the computed natural frequencies. 
The objective was to identify a stable parameter region where the results 
become insensitive to further parameter variation while avoiding ill- 
conditioning. As summarized in Table 1, excessively small values of dc 
lead to ill-conditioned interpolation matrices and numerical instability, 
whereas overly large values result in over-smoothed approximations 
with reduced accuracy. Within an intermediate stable region, the 
computed natural frequencies exhibit negligible sensitivity to changes in 
the MQ parameters. In particular, variations of dc and q within this re
gion result in changes of less than 0.3% in the first natural frequency, 
indicating a numerically converged and robust solution. Based on this 
observation, the parameter values highlighted in Table 1 were adopted 
in the present study to ensure a balanced compromise between accuracy 
and computational stability.

Table 2 reports the convergence behavior of the present RPIM dis
cretization for a variable-thickness thin cylindrical shell with thickness 
variation parameter p=1 under clamped–clamped (C–C) boundary 
conditions. Nr and Nz denote the number of nodes in the radial r and 
axial z directions, respectively. The first four frequency parameters 
ωp1–ωp4, defined based on ωp measure introduced in Eq. (36), are listed 
to assess numerical stability. The results exhibit negligible changes as Nr 
and Nz increase, indicating a well-converged solution and confirming 
that the adopted nodal discretization provides sufficient spatial resolu
tion for accurate vibration prediction in the considered variable- 
thickness configuration.

Table 3 compares the frequency parameter ωp of a thick cylindrical 
shell with linear varying thickness (p=1) obtained by the proposed 
RPIM-based formulation with the benchmark three-dimensional elas
ticity solutions reported by Duan and Koh [54] and the corresponding 
FEM results. For the first vibration mode, the difference between the 
present results and both reference and FEM solutions is negligible 
(below 0.1%), indicating excellent accuracy. As the mode order in
creases, slightly larger discrepancies are observed due to increased 
modal complexity; however, even in the worst case (fourth mode), the 
maximum deviation between the present results and the reference so
lution remains limited to approximately 4.23%, while the difference 
with FEM results does not exceed 0.04%. These results demonstrate that 
the proposed method achieves FEM-level accuracy and reliably re
produces benchmark solutions, thereby validating its suitability for 
dynamic and thermal stability analyses of cylindrical shells under 
various boundary and thermal conditions.

The fundamental frequency parameters for axisymmetric (m=0) and 
non- axisymmetric (m=1) vibration modes are presented in Figs. 2a and 
2b, respectively, as functions of the thickness variation parameter for a 

Table 2 
Frequency parameter ωp for thickness variation parameter p = 1 and C-C 
boundary condition.

Nr Nz ωp1 ωp2 ωp3 ωp4

17 46 7.138 11.6535 16.1233 20.4324
​ 47 7.138 11.6532 16.1228 20.4317
​ 48 7.138 11.6533 16.1233 20.4322
​ 49 7.138 11.6533 16.1234 20.4315
​ 50 7.137 11.6528 16.1224 20.4314
​ 51 7.137 11.6518 16.1212 20.4303
18 46 7.139 11.6546 16.1260 20.4384
​ 47 7.139 11.6542 16.1269 20.4395
​ 48 7.138 11.6542 16.1274 20.4373
​ 49 7.138 11.6538 16.1266 20.4364
​ 50 7.138 11.6542 16.1259 20.4373
​ 51 7.138 11.6541 16.1249 20.4386
19 46 7.139 11.6574 16.1298 20.4455
​ 47 7.139 11.6570 16.1291 20.4450
​ 48 7.139 11.6566 16.1298 20.4444
​ 49 7.139 11.6561 16.1293 20.4440
​ 50 7.139 11.6560 16.1288 20.4447
​ 51 7.137 11.6536 16.1248 20.4389
20 46 7.139 11.6560 16.1289 20.4443
​ 47 7.138 11.6559 16.1284 20.4437
​ 48 7.138 11.6556 16.1286 20.4433
​ 49 7.138 11.6553 16.1282 20.4431
​ 50 7.138 11.6547 16.1281 20.4435
​ 51 7.138 11.6548 16.1276 20.4431
21 46 7.139 11.6575 16.1319 20.4489
​ 47 7.139 11.6575 16.1317 20.4490
​ 48 7.139 11.6572 16.1314 20.4483
​ 49 7.139 11.6568 16.1309 20.4477
​ 50 7.139 11.6566 16.1305 20.4479
​ 51 7.139 11.6563 16.1309 20.4478

Table 3 
Validation of the proposed RPIM formulation through comparison of frequency 
parameter ωp for a thick cylindrical shell with linear varying thickness (p=1).

Method Frequency parameter ωp

First 
mode

Second 
mode

Third 
mode

Fourth 
mode

Ref [54] 7.1315 11.8397 16.5768 21.3127
FEM [54] 7.1386 11.6574 16.1354 20.4568
Proposed method 7.1389 11.6563 16.1309 20.4478
Difference with Ref [54] 

(%)
0.10 -1.57 -2.76 -4.23

Difference with FEM 
[54] (%)

0.00 -0.01 -0.03 -0.04

Fig. 2. Fundamental frequency (ωp) of thin-walled cylindrical shell in terms of thickness variation parameter for different boundary conditions for (a) m=0, (b) m=1.
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thin-walled cylindrical shell under different boundary conditions. The 
results indicate that under the clamped-clamped (C-C) boundary con
ditions, the natural frequency reaches its highest value, and as the 
thickness parameter increases from -1 to +1, the frequency decreases 
significantly. In the C-C case, the natural frequency decreases by 
approximately 20% when the thickness parameter changes from -1 to 
+1, whereas in the SS-SS Type-II case, the frequency variation is less 
than 5%. Under clamped-free (C-F) boundary conditions, a decreasing 
trend in frequency is also observed, but the extent is smaller. For simply 
supported Type-I (SS-SS Type-I) boundary conditions, the natural fre
quency is relatively lower and shows a slight increase as the thickness 
parameter rises. In contrast, under simply supported Type-II (SS-SS 
Type-II) conditions, the natural frequency remains nearly constant, with 
no significant change due to variations in thickness. These results 
demonstrate the significant influence of the variable thickness param
eter and boundary condition type on the vibrational response of cylin
drical shells, highlighting the importance of considering these factors in 
structural analyses. As seen in Fig. 2(b), in the non-axisymmetric (m=1) 
case under clamped-clamped (C-C) boundary conditions, the natural 
frequency exhibits a slight decrease with increasing thickness param
eter, though this change is less pronounced compared to the 

axisymmetric case.
Under SS-SS boundary conditions particularly Type-II the natural 

frequency remains nearly constant, with thickness variation having little 
effect. These findings indicate that non-axisymmetric modes are less 
sensitive to thickness changes, and the vibrational behavior depends 
more strongly on boundary conditions. This further emphasizes the 
critical role of boundary condition and geometric parameters in the 
dynamic response of cylindrical shell structures.

Boundary conditions determine how much a shell can move or rotate 
at its edges; these constraints directly influence stress distribution, 
deformation, and vibrational behavior. When the shell's thickness var
ies, it's bending stiffness and mass distribution change across different 
sections. In C-C boundary conditions, the edges are highly restrained, so 
even slight changes in thickness distribution immediately translate into 
significant shifts in the system's overall stiffness and consequently, in its 
natural frequencies. However, under free or simply supported boundary 
conditions (especially Type-II, which allows greater freedom of move
ment), the edges permit more displacement and rotation. As a result, 
thickness variations have a weaker effect on the overall vibrational 
response. Simply put, the more constrained the boundary conditions, the 
more sensitive the system becomes to geometric changes (such as 

Fig. 3. Frequency parameter (ωp) in terms of circumferential wave number of thin-walled cylindrical shell for (a) C-C (b) C-F (c) SS-SS Type-I (d) SS-SS Type-II 
boundary conditions.
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variable thickness). Conversely, with freer or less restrictive boundaries, 
this sensitivity decreases, and the system's response depends more on 
edge mobility. Thus, the influence of shell thickness variations on 
vibrational behavior is directly linked to the degree of constraint or 
freedom in the boundary conditions. This explains why clamped shells 
show strong frequency shifts with thickness changes, while simply 
supported or free-boundary shells exhibit minimal variation.

Figs. 3a-3d illustrate the variation of the frequency parameter with 
respect to the circumferential wave number for different thickness 
variation parameters under C− C, C− F, SS− SS Type-I, and SS− SS Type-II 
boundary conditions, respectively. The results reveal that under 
clamped-clamped C− C boundary conditions, the frequency parameter 
exhibits significant variations when the thickness parameter is altered, 
regardless of the circumferential wave number. In contrast, for simply 
supported SS− SS Type-I and SS− SS Type-II boundaries, the frequency 
parameter remains relatively insensitive to thickness variations at low 

circumferential wave numbers, but the differences become more pro
nounced as the wave number increases. Interestingly, the clamped-free 
C− F boundary condition displays a distinct behavior, while the overall 
variation in the frequency parameter is substantial, the differences 
caused by thickness changes remain relatively small across all circum
ferential wave numbers. These findings highlight the strong influence of 
both thickness variation and boundary conditions on the vibrational 
response of thin cylindrical shells. Additionally, unlike cylindrical shells 
with uniform thickness, the lowest frequency in this study does not 
consistently correspond to the first non-axisymmetric mode (m = 1).

4.2. Variable thickness thick cylindrical shell

A thick cylindrical shell with radius r = 1.5 m, h0 = 0.1 m, L=10 m 
and L − L0 = 4 is analyzed. This study presents, for the first time, a three- 
dimensional investigation of natural frequencies for thick cylindrical 
shells with varying thickness under different boundary conditions. To 
validate the results, the frequency parameter ωp is used, where ro rep
resents the outer radius at z=L. For negative values of the thickness 
variation parameter p, the shell thickness decreases toward one axial 
end. To preserve geometric admissibility and physical relevance, the 
minimum value of p is restricted to − 0.4. For smaller values, the local 
thickness becomes excessively small, leading to unrealistic shell geom
etry and violating the applicability conditions of thick-shell modeling, 
although the thickness remains mathematically positive. Therefore, the 
chosen lower bound ensures a physically meaningful thickness distri
bution and numerical robustness.

Table 4 summarizes the effect of axial thickness variation on the 
frequency parameter ωp of the cylindrical shell under the C-C boundary 
conditions. The results clearly demonstrate that the thickness gradient 
parameter significantly influences the dynamic response, with 
increasing thickness leading to higher stiffness and consequently higher 
natural frequencies. This highlights the importance of considering var
iable thickness distributions in realistic shell vibration analyses.

In Figs. 4 and 5, the effect of the thickness variation parameter and 
boundary conditions on the frequency parameter ωp at 25◦C is shown. In 
the thick-walled cylindrical shell, the minimum value of the thickness 

Table 4 
Frequency parameter ωp under C− C boundary condition of thick cylindrical 
shell for p = 0.

Nr Nz m Ω‾ 1 m Ω‾ 1 m Ω‾ 1

10 18 0 1.572 1 1.312 2 1.594
​ 19 ​ 1.572 ​ 1.311 ​ 1.594
​ 20 ​ 1.572 ​ 1.311 ​ 1.593
​ 21 ​ 1.572 ​ 1.311 ​ 1.593
​ 22 ​ 1.571 ​ 1.310 ​ 1.593
​ 23 ​ 1.571 ​ 1.310 ​ 1.592
11 18 ​ 1.571 ​ 1.312 ​ 1.595
​ 19 ​ 1.571 ​ 1.311 ​ 1.594
​ 20 ​ 1.571 ​ 1.311 ​ 1.594
​ 21 ​ 1.571 ​ 1.311 ​ 1.593
​ 22 ​ 1.571 ​ 1.310 ​ 1.593
​ 23 ​ 1.571 ​ 1.310 ​ 1.593
12 18 ​ 1.571 ​ 1.312 ​ 1.595
​ 19 ​ 1.571 ​ 1.311 ​ 1.595
​ 20 ​ 1.571 ​ 1.311 ​ 1.594
​ 21 ​ 1.571 ​ 1.310 ​ 1.594
​ 22 ​ 1.571 ​ 1.310 ​ 1.594
​ 23 ​ 1.571 ​ 1.310 ​ 1.593
​ Exact ​ 1.571 ​ 1.308 ​ 1.594

Fig. 4. Frequency parameter (ωp) of thick-walled cylindrical shell in terms of thickness variation parameter for different boundary conditions for (a) m=0, (b) m=1.
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variation parameter (p) is set to -0.4 due to geometric constraints. From 
Fig. 4, which displays axisymmetric vibrations (m=0), it can be observed 
that the frequency variation in the C-C, SS-SS Type-I, and SS-SS Type-II 
boundary conditions is quite similar these boundary conditions have no 
effect on the frequency and show a clear difference compared to the C-F 
boundary condition. Additionally, the influence of the thickness varia
tion parameter under these boundary conditions is similar but differs 
from the C-F case. It is clearly seen that the thickness variation param
eter in the C-F case has a stronger effect on the frequency compared to 
other boundary conditions.

The natural frequency of vibrations under C-C, SS-SS Type-I, and SS- 
SS Type-II boundary conditions remains nearly constant and indepen
dent of the boundary conditions due to their strict constraints and edge 
fixity. These boundary conditions impose strong restrictions on edge 
displacements and rotations, stabilizing the distribution of vibrational 
mode shapes in such a way that thickness variations cannot induce 
significant changes in the overall structural stiffness. In fact, rigid 
boundary constraints tightly control the shell's vibrational behavior, 
homogenizing the effects of thickness variation across the structure. As a 
result, localized thickness changes in axisymmetric modes which exhibit 

Fig. 5. Frequency parameter (ωp) in terms of circumferential wave number of thick-walled cylindrical shell for (a) C-C, (b) C-F, (c) SS-SS Type-I, (d) SS-SS Type-II 
boundary conditions.

Fig. 6. The effect of length-to-radius ratio (L/R) on the critical temperature 
parameter of variable-thickness cylinders.
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uniform vibration patterns have minimal impact on the natural fre
quency. Thus, under these conditions, natural frequencies depend more 
on local geometric variations (such as variable thickness) rather than on 
boundary conditions or edge constraints. Moreover, when boundary 
conditions are similar or closely related, their influence on natural fre
quency becomes negligible, making the frequency appear independent 
of boundary conditions. This phenomenon primarily occurs in axisym
metric modes and relatively uniform structures, where the vibration 
pattern is dominated more by geometric and material parameters than 
by edge constraints.

On the other hand, a comparison between Fig. 4a and Fig. 2 reveals 
that as the thickness changes from thin to thick, the trend of frequency 
variation remains similar under C-C and SS-SS Type-I boundary condi
tions but differs significantly under C-F and SS-SS Type-II conditions. 
This suggests that frequency variations depend more on thickness than 
on boundary conditions. However, these results do not hold for non- 
axisymmetric vibrations (m=1), as illustrated in Fig. 4b. For all 
boundary conditions except C-F, the natural frequency of non- 
axisymmetric vibrations decreases as the thickness variation param
eter increases. Additionally, it is evident that SS-SS Type-I and C-F 
boundary conditions are more sensitive to thickness variations than the 
other two boundary conditions.

4.3. Thermal effects

Fig. 6 illustrates the influence of the length-to-radius ratio L/R of 
cylinders with variable thickness on the critical temperature parameter 
λcr. The results indicate that as the L/R ratio increases, the critical 
temperature parameter decreases significantly, demonstrating that 
longer cylinders exhibit reduced thermal buckling resistance compared 
to shorter ones. Additionally, variations in the thickness parameter p 
from negative to positive values lead to a gradual decrease in λcr, 
highlighting the detrimental effect of localized thickness increases on 
thermal stability. The highest λcr value corresponds to L/R = 20, while 
the lowest occurs at L/R = 50, confirming that shorter cylinders possess 
superior thermal resistance compared to longer ones. These findings 
underscore the critical role of geometric parameters and thickness var
iations in the design of cylinders under thermal loading, necessitating 
careful consideration in engineering analyses. As seen in Fig. 6, 
increasing the thickness parameter p, which corresponds to localized 
thickening, causes a gradual reduction in the critical temperature. 
However, this decline eventually stabilizes, with λcr converging to a 
constant value. This behavior suggests that beyond a certain thickness 
increase, further variations have a diminishing effect on thermal sta
bility, and the system reaches a relatively steady state. Thus, excessive 
thickness modifications beyond this threshold do not significantly alter 

the critical temperature, indicating that the influence of parameter p is 
bounded.

Fig. 7 illustrates the effect of the radius-to-thickness ratio R/H in 
cylindrical shells with variable thickness on the critical temperature 
parameter. In this figure, four different cases of the radius-to-thickness 
ratio (R/H = 20, 25, 50, 100) are examined for a fixed length-to- 
radius ratio L/R = 20. As observed, as the thickness variation param
eter p increases, indicating greater thickness inhomogeneity, the value 
of the critical temperature parameter decreases. This reduction dem
onstrates that thickness variation leads to a decrease in the thermal 
stability of the shell.

Additionally, as the radius-to-thickness ratio R/H increases, meaning 
thinner shells, the critical temperature parameter generally decreases, 
indicating that thinner shells are more sensitive to thermal effects. In the 
magnified section of the graph, the trend of the critical temperature 
parameter decreasing at low values of the thickness variation parameter 
p is displayed with greater precision, confirming a continuous and 
noticeable decline in this parameter even with slight increases in 
thickness variation. The parameter p represents the intensity of thick
ness variation along the shell. When p is small, the thickness is nearly 
uniform or exhibits minor variations, so the shell's thermal behavior is 
less sensitive to the radius-to-thickness ratio R/H. However, as p in
creases, thickness inhomogeneity becomes more pronounced, causing 
certain sections of the shell to become thicker or thinner.

This inhomogeneity leads to a non-uniform distribution of stiffness 
and mass in the shell, amplifying the effect of R/H. Shells with a large 
radius-to-thickness ratio (thin shells) are more sensitive to thickness 
variations and stiffness inhomogeneity due to their higher flexibility. At 
higher values of p, where thickness varies significantly, this sensitivity 
increases, resulting in more pronounced changes in the critical tem
perature parameter. Thus, thin shells (high R/H) under substantial 
thickness variation (hig hp) exhibit greater thermal instability, as re
flected in the sharper decline of the critical temperature parameter.

4.4. Limitations of the meshless RPIM framework

Despite the flexibility and accuracy of meshless methods for prob
lems involving smooth geometries and continuously varying material or 
geometric properties, the present RPIM-based formulation exhibits 
several limitations when applied to highly complex shell structures. 
First, the accuracy of RPIM strongly depends on the appropriate 

Fig. 7. The effect of the variable thickness radius-to-thickness ratio (R/H) on 
the critical temperature parameter.

Table 5 
Comparison between RPIM (Meshless Method) and FEM for shell structure 
analysis.

Aspect RPIM (Meshless Method) FEM (Finite Element 
Method)

Geometric discretization Node-based, no mesh 
required

Element-based mesh 
required

Handling variable 
thickness

Highly flexible for smooth 
thickness variation

Requires remeshing or 
special elements

Accuracy for smooth shells High accuracy with 
proper node distribution

High accuracy with 
refined mesh

Complex shell geometry 
(cut-outs, sharp corners)

Limited; requires special 
treatment

Strong capability and 
mature tools

Boundary condition 
enforcement

More challenging for 
complex boundaries

Well-established and 
straightforward

Large deformation and 
strong nonlinearity

Limited without 
additional formulation

Well-developed 
nonlinear formulations

Computational cost (large- 
scale problems)

Higher due to dense 
interpolation matrices

Generally more 
efficient for large 
models

Mesh distortion issues Not applicable May occur for large 
deformations

Implementation 
complexity

Higher for complex 
geometries

Lower due to 
commercial solvers

Typical application domain Smooth shells, graded 
thickness, vibration/ 
buckling

General-purpose 
structural analysis
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selection of support domain size, radial basis function parameters, and 
node distribution. For shells with severe geometric irregularities, sharp 
curvature transitions, or localized thickness discontinuities, improper 
parameter selection may lead to reduced accuracy or numerical insta
bility. Second, while the meshless framework avoids mesh distortion 
issues commonly encountered in finite element methods, the imposition 
of complex boundary conditions on intricate shell edges or multi- 
connected domains remains challenging. The enforcement of displace
ment and traction constraints in RPIM generally requires additional 
treatments, which may increase implementation complexity for shells 
with non-standard boundaries. Third, the current formulation is devel
oped under the assumption of moderate deformation and linear elastic 
material behavior. Consequently, its direct applicability to shells expe
riencing extremely large deformations, severe geometric nonlinearities, 
material plasticity, or damage evolution is limited without further 
extension of the governing equations and numerical scheme.

Finally, compared to conventional finite element approaches, 
meshless methods may incur higher computational cost for large-scale 
problems due to the construction and inversion of dense interpolation 
matrices. This aspect may restrict their efficiency when analyzing very 
large or highly detailed shell models unless advanced numerical accel
eration techniques are employed.

Therefore, while the present RPIM framework is well suited for 
three-dimensional vibration and thermal buckling analysis of cylindrical 
shells with smoothly varying thickness, caution should be exercised 
when extending it to shells with highly complex geometries, severe 
deformities, or strongly nonlinear material behavior. As summarized in 
Table 5, the meshless RPIM framework offers distinct advantages for 
shell structures with smooth geometry and continuously varying thick
ness, particularly by avoiding mesh distortion and remeshing diffi
culties. However, for shells with highly complex geometries, sharp 
discontinuities, or severe deformation patterns, conventional FEM re
mains more robust due to its mature boundary enforcement techniques 
and well-established nonlinear formulations. The present study there
fore focuses on a class of cylindrical shells for which RPIM provides an 
efficient and accurate alternative, while acknowledging that FEM may 
be more suitable for more geometrically intricate shell configurations.

5. Conclusions

This study presents a unified three-dimensional meshless RPIM 
framework for the vibration and thermal buckling analysis of cylindrical 
shells applicable to both thin and thick regimes. By directly modeling 
the three-dimensional displacement field, the proposed approach pro
vides a consistent formulation without the need for thickness-dependent 
shell theories. The accuracy of the method is validated through com
parisons with a well-established three-dimensional elasticity-based 
benchmark solution and independent three-dimensional finite element 
results, which is particularly relevant given the limited availability of 
benchmark data for thick cylindrical shells.

The results demonstrate that the proposed method achieves high 
accuracy for thin shells and maintains robustness for thick shells through 
appropriate nodal refinement in the thickness direction. Parametric 
studies reveal that thickness variation significantly affects both vibra
tion characteristics and thermal stability. In particular, the critical 
temperature increases with the thickness variation parameter p and 
reaches a saturation regime at approximately p≈6, beyond which 
further increases in p have negligible influence. While the absolute 
critical temperature depends on the geometric ratios L/R and R/H, the 
saturation threshold with respect to p remains nearly unchanged for the 
range of geometries considered.

The meshless nature of the proposed formulation offers enhanced 
flexibility for modeling variable thickness distributions and complex 
boundary conditions, making it a promising alternative for advanced 
shell dynamics and thermal stability analyses. The present study is 
limited to shells with smooth geometric variation and quasi-static 

uniform thermal loading; extensions to transient thermal effects, ther
mal cycling, and more complex geometries are identified as important 
directions for future research.
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