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This paper presents a comprehensive analysis of free vibrations and thermal buckling of cylindrical shells with
variable thickness, formulated based on three-dimensional elasticity theory and the variational principle. The
governing equations are derived by considering geometric nonlinearities and uniform temperature distribution,
then solved meshlessly using the Radial Point Interpolation Method (RPIM).The key innovation of this research
lies in developing an accurate and integrated model that effectively simulates the complex effects of variable
thickness on the dynamic behavior and thermal stability of shells under various boundary and thermal condi-
tions. Numerical results demonstrate that thickness variations significantly influence natural frequencies and
critical buckling loads, particularly under thermal loading and diverse boundary conditions, where the shell's
behavior undergoes remarkable changes. A comparison with reference data confirms the accuracy and efficiency
of the proposed model. This study provides valuable insights for the design and optimization of shell structures in

thermal environments.

1. Introduction

The analysis of the dynamic behavior and thermal stability of cy-
lindrical shells, especially when their thickness is variable, is a signifi-
cant challenge in structural engineering [1-3]. These shells, due to their
widespread applications in industries such as aerospace, energy, and
marine structures, have always received considerable attention [4-6].
Variations in the thickness of these shells can have substantial effects on
their vibrational properties and thermal stability, making accurate
analysis crucial for optimizing the design and performance of complex
structures [7-9]. Given the limitations of existing analytical models in
predicting the behavior of shells with variable thickness, the use of
advanced numerical methods, such as meshless techniques, in simu-
lating the behavior of these shells under real-world conditions, espe-
cially under varying temperatures and complex loading scenarios, is of
great importance.

In most studies, cylindrical shells have been analyzed using simpli-
fied theories since the use of three-dimensional elasticity theory leads to
mathematical complexities in the governing equations [10-12]. While
the accuracy of simplified theories is acceptable for thin shells, these
theories lack sufficient accuracy for thick shells, requiring the use of
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higher-order theories [13-15]. Even for achieving acceptable precision,
the use of three-dimensional elasticity theory is essential [16-18]. In the
existing literature, various but limited theories have been proposed to
explain the behavior of cylindrical shells with variable thickness. Wang
et al [19] developed a dynamic model based on the precise transfer
matrix method to investigate the vibrational behavior of cylindrical
shells with variable thickness, observing this behavior by solving a set of
first-order differential equations. Duan and Koh [20] presented analyt-
ical solutions for the transverse vibrations of cylindrical shells with
uniformly varying thickness in arbitrary power-law forms, expressed in
terms of generalized hypergeometric functions due to the forces acting
in the transverse direction. Jiaet al [21] examined the free vibrations of
stepped cylindrical shells with thickness variations in both the axial and
circumferential directions based on Reissner’s shell theory and a new
symplectic mechanics approach. El-Kaabazi et al [22] studied the dy-
namic stiffness equations for cylindrical shells with variable thickness
under the assumptions of Donnell, Timoshenko, and Fliigge shell the-
ories. For instance, Zhang et al [23] investigated vibration mitigation of
doubly curved composite panels under transient dynamic loading by
integrating advanced control schemes with optimization algorithms as
well as machine learning techniques. Khoshgoftar et al [24] utilized
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second-order shear deformation theory as a higher-order shear defor-
mation theory to analyze a functionally graded axisymmetric cylindrical
shell with variable thickness.

A wide range of analytical, semi-analytical, and numerical methods
have been developed and applied in the literature to investigate the
vibration behavior of structural systems [25-27]. The finite element
method is widely employed for vibration and thermal buckling analysis
of shell structures by discretizing the three-dimensional elasticity
equations into finite elements, enabling accurate modeling of complex
geometries, boundary conditions, and thickness variations, and is
commonly used as a benchmark for validating advanced numerical and
meshless formulations [28,29]. Tang et al [17] presented a
semi-analytical solution for analyzing the free vibrations of functionally
graded cylindrical shells with variable thickness in two directions. In
this model, the mechanical properties of the shells vary in both the axial
and thickness directions. Sharafkhani et al [30] investigated the
nonlinear mechanical behavior of circular functionally graded
micro-plates subjected to combined electrostatic and mechanical shock
loadings. Using a Galerkin-based reduced-order model and step-by-step
linearization, they analyzed dynamic response, stability, and the influ-
ence of through-thickness material gradation on vibration characteris-
tics. Alam et al [31] investigated the free vibrations of cylindrical shells
in their study. The impact of various parametric ratios, such as the
diameter-to-thickness ratio (D/t) and length-to-diameter ratio (L/D), on
the vibrations of the shells was examined. These analyses were per-
formed using the ANSYS Parametric Design Language (APDL) based on
first-order shear deformation theory (FSDT) for different boundary
conditions. Ameli-Basiri et al [32] analyzed the free vibrations of closed
and open cylindrical shells using the state-space transformation concept,
along with the Differential Transformation Method (DTM). The gov-
erning equations for these shells were developed based on Sanders'
thin-shell theory and then transformed into a set of first-order differ-
ential equations, which were solved using the DTM method. Wang et al
[33] developed a novel method for analyzing the free vibrations of
moderately thick cylindrical shells. This method incorporates adaptive
finite elements and crack damage simulation for analyzing natural fre-
quencies. In this study, an iterative reverse method and error evaluation
techniques, along with mesh refinement, were introduced to create a
computational framework for vibration analysis of cracked cylindrical
shells. Tong et al [34] proposed an analytical symplectic approach for
studying the free vibrations of cylindrical shells. In this approach,
symplectic space was used to systematically derive exact solutions
without the need for trial functions. Taati et al [35] examined the free
vibrations of cylindrical shells with variable thickness based on Donnell
and Love’s theories. They derived the governing equations and associ-
ated boundary conditions for these shells and presented a closed-form
sixth-order frequency equation that investigates the effect of thickness
variations on the natural frequencies and mode shapes of the shells.
Grigorenko et al [36] analyzed the free vibrations of elliptical cylindrical
shells with variable thickness using the modified Timoshenko-Mindlin
theory. This study examined the effects of cross-sectional deformation,
thickness variations, material properties, and boundary conditions on
the natural frequency spectrum of the shells. Golpayegani et al [37]
performed free vibration analysis of thin cylindrical shells made of
functionally graded materials with linear thickness variations using
finite element methods. The results of this study highlight the impact of
thickness variations and boundary conditions on the natural frequencies
of these shells. Kim et al [38] analyzed the vibrational behavior of cy-
lindrical shells with variable thickness using the Haar wavelet dis-
cretization method. They developed theoretical formulations based on
first-order shear deformation theory (FSDT) for these shells and calcu-
lated the natural frequencies and mode shapes. Grigorenko et al [39]
also investigated the free vibrations of elliptical cross-sectional cylin-
drical shells with variable thickness using FEMAP software and the
NASTRAN solver. These studies have taken significant steps in the
analysis of vibrations and dynamic behavior of cylindrical shells with
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variable thickness. Each of these works, through the introduction of
different methods and models, extensively contributes to the design and
analysis of shell structures and paves the way for future research in this
field [40-44].

There are various methods available for analyzing shells in this
domain [45-47], but many of these methods face challenges such as the
need for complex meshing, high computational complexity, and limited
accuracy in modeling complex behaviors. In this context, meshless
methods, such as the radial point interpolation method (RPIM), have
been introduced as advanced tools for the precise and efficient analysis
of cylindrical shells with variable thickness. These methods not only
eliminate the need for meshing but also enable more accurate modeling
of the structural behavior under non-uniform loading and temperature
conditions. Li et al [48] presented a comprehensive numerical investi-
gation of the free vibration behavior of rotating cross-ply laminated
combined conical-cylindrical shells subjected to thermal environments.
Their study employed a meshless Chebyshev-based RPIM within the
framework of first-order shear deformation theory, accounting for cen-
trifugal and Coriolis effects as well as thermal-induced nonlinear strain
components. The reliability of their approach was demonstrated
through extensive comparisons with established results, highlighting the
effectiveness of meshless techniques for coupled shell systems under
thermal and rotational effects. Liang et al [49] developed a novel
three-dimensional vibration model for cylindrical shells based on full 3D
elasticity theory using the Carrera unified formulation. By expanding
displacement fields through Chebyshev polynomials and Taylor series
and introducing artificial boundary surface springs, their model ach-
ieved high accuracy for arbitrary boundary conditions, as validated
against finite element and literature results. More recently, other re-
searchers have continued to extend advanced numerical frame-
works—such as refined meshless schemes, unified formulations, and
high-fidelity finite element models—to investigate the dynamic
response of cylindrical and coupled shell structures under varying
geometrical, boundary, and thermal conditions [50,51]. Li et al [52]
developed a three-dimensional elasticity-based vibration model for cy-
lindrical shells via the meshless method, enabling accurate prediction of
dynamic behavior under general boundary conditions. Comprehensive
reviews and recent advances in refined and three-dimensional shell
theories were summarized by Mahmoud et al [53], highlighting the
growing importance of 3D formulations for vibration and stability
analysis. Despite these advances, most existing studies either focus on
uniform-thickness shells or rely on conventional discretization strate-
gies, indicating a clear need for robust three-dimensional and meshless
formulations capable of simultaneously addressing thickness variation,
boundary diversity, and thermal effects with verified accuracy.

The main innovation of this paper lies in the use of meshless methods
for the three-dimensional free vibration analysis of thin and thick cy-
lindrical shells with variable thickness under the influence of thermal
buckling and temperature effects. While traditional methods face
numerous limitations, this study significantly overcomes these con-
straints by employing the RPIM, offering a more flexible and accurate
approach for modeling complex thickness variations and thermal con-
ditions. This innovation has a significant impact on the precise predic-
tion of natural frequencies and vibration behavior of cylindrical shells
with variable thickness under complex thermal conditions, contributing
greatly to the improved design and optimization of shell structures in
various industries.

2. Radial point interpolation method (RPIM)

This section provides a concise overview of the RPIM. For more
detailed explanations, refer to [38]. To interpolate a scalar field #(x) in a
three-dimensional domain V, N nodes are distributed at positions x;(i =
1, 2, ..., N). In the meshless method, the value of #7(x) at any point x is
approximated using function values from nodes within a local support
domain around x. Only these nearby nodes influence the interpolated
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field at that point. This relationship can be expressed as follows:
n(x) =Y @i(x)7li = ©(x)7] m
i=1

where ®;(x) is the shape function at the it" node that possess the Kro-
necker delta property and satisfy the partition of unity.

q)i (XJ) = 51] (Za)

D o) =1 (2b)
i=1

To accurately capture stress gradients induced by axial thickness
variation and three-dimensional deformation effects, a non-uniform
nodal distribution is adopted in the present RPIM discretization. In the
axial direction, the nodal coordinates are generated using a power-law
stretching function as:

i p
zi:L(ﬁ) , 1=0,1,...,N,, (3a)

z

where N, denotes the number of nodes along the axial direction and f is
a stretching parameter controlling the concentration of nodes. When
p=1, a uniform nodal distribution is obtained, whereas $>1 results in
increased nodal density in regions with higher thickness gradients.

For thick cylindrical shells, sufficient resolution through the thick-
ness is ensured by adopting a non-uniform nodal distribution in the
radial direction, given by:

: 14
" :Tin+h(z)(1\17) j=01,.N, (3b)

where N, is the number of nodes in the radial (thickness) direction, ry,
denotes the inner radius of the shell, and y controls the clustering of
nodes near the shell surfaces. Larger values of y provide enhanced res-
olution in regions with high through-thickness stress gradients. The
effectiveness of the adopted nodal distribution strategy is verified
through the convergence studies reported in the Results section, which
demonstrate that the computed vibration characteristics are insensitive
to further nodal refinement.

The support domain is a subregion of the problem domain, centered
at point x, that can have arbitrary shape and dimensionality. While
spherical or cubic support domains are most commonly employed, other
geometries are possible. The shape functions are constructed using
radial basis functions (RBFs).

n(x) =Y Ri(x)ai+ > P;(x)b; = R"a+P'b )
i=1 j

Jj=1

In this formulation, R; and P; represent the n radial basis functions
and m polynomial basis functions in the coordinates x, respectively,
while ag; and b; are unknown constants that will be derived later. To
enhance accuracy and ensure interpolation stability, polynomial func-
tions are incorporated into the model. The radial basis functions R;
depend on the distance s between the point x and a given node x; within
the support domain.

s= \/(xfxi)2+(yfyi)2+(zfz,-)2 (5)

Among various radial basis functions, the multi-quadric (MQ) func-
tion is adopted in this work due to its favorable properties.

Ri(x) = (s + (aede))* (6)

where a., d. and q are shape parameters examined numerically.
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Meanwhile, the polynomial basis functions P; provide completeness and
improve conditioning of the system.

Py (x) ] %)

In the present RPIM formulation, the multi-quadric (MQ) radial basis
function is employed, in which the shape parameters a, d. and q play a
crucial role in interpolation accuracy and numerical stability. Rather
than performing a formal optimization, these parameters are selected
based on a sensitivity-driven convergence and stability criterion, which
is a common and effective practice in meshless methods.

Substituting Eq. (2) into (4) yields a system of equations that com-
bines both radial basis and polynomial terms. This substitution ensures
compatibility and enforces necessary constraints on the solution. The
resulting system can be expressed in matrix form as:

Px)=[1 x y z X¥* xy xz

ii=Ra+Pb ®
where
Ri(x1) Ra(x1) Rn(x1)
ﬁ _ R, (Xz) R, (Xz) Rn (Xz) (9)
Rl (Xn) R2 (Xn) Rn(xn)
(1 x 1 Pa(x1)
ﬁ _ 1 X2 Y2 Pm(XZ) (10)

1 Xu Yn Pn(Xn)
Considering Eq. (8), the system consists of n equations with n + m

unknowns. The required M additional equations are obtained by
enforcing the polynomial reproduction constraints:

Pa=0 an

Thus, by solving Eq. (8) using Eq. (11), we can express the variables a
and b in terms of 4. These expressions can then be substituted into Eq.
(4) to obtain a set of equations in the form of Eq. (1).

3. Governing equations

Consider an isotropic cylindrical shell with radius r, variable thick-
ness h(z) and length L—L, as depicted in Fig. 1. The thickness variation
function is defined by h(z)=ho(z/L) that ho is the thickness at z=L and p
is the thickness variation parameter. The displacement field is defined in
cylindrical coordinates, with displacements in the radial r, circumfer-
ential 0, and axial z directions:

u=[u v w] 12)

where u, v, and w denote the displacements in the radial r, circumfer-
ential ¢, and axial z directions, respectively.

The elastodynamic equation of homogeneous and isotropic cylin-
drical shell with density p is given by:

Ao = pui 13)

where ¢ denotes the three-dimensional stress vector expressed in cy-
lindrical coordinates, consisting of three normal stress components (o,
0gp, 0z) and three shear stress components (69, 0y, 0gz), and

T
6=1[0r 6w Ou O On Ogl (14a)
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Fig. 1. Axial section of cylindrical shell with variable thickness.

J0 1 1 10 d
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The equation governing the relationship between stress and strain is
given by:

6 =De 5)
where

€ =€y —€En (16)
En=[Er 0 Em 0 Em €| a7
en=[0r Gw Uz o Gm ] =aAT 18)
a=[a a a 0 0 0] (19)

where AT represents the temperature variation of the shell from the
reference temperature to the buckling point, and «a is the coefficient of
thermal expansion and ¢, and &g is the mechanical and thermal strain
respectively.

In this study, the temperature change AT is assumed to be uniform
throughout the shell domain. Consequently, the thermal strain vector is
spatially constant and expressed as eP—aAT, where o denotes the co-
efficient of thermal expansion. Under this assumption, thermal stresses
are induced only through the mechanical constraints imposed by the
boundary conditions, and no temperature gradient is considered in
either the thickness or axial directions.

The equation that defines the relationship between strain and
displacement fields is expressed as follows:

e=Lu (20)

The operator matrix is expressed as follows:

0
5 0 0
1 0
oo °
0 0 ai
L= “ (21)
o 92 9
0z rod
0 i)
z 0 o
0 0 1
0 o r O

It is supposed that interpolation for a specific point in the shell is
done using n nodes in the support domain of that point:

u=>ou (22a)

U=[wy v w, ... U Vp W] (22b)

Here, ® represents the shape function matrix of the RPIM.
Substituting Eq. (22) into Eq. (20) results in:

e = LoU — oAT = Bu — aAT (23)

here, B = L® represents the strain-displacement operator matrix. By
substituting Eq. (23) into Eq. (17), we obtain:

6 = DBU — DaAT = 6, — O 24)

The displacement fields for the cylindrical shell with variable wall
thickness can be expressed as:

u(r, 6, 2,t) = U(r, z)cos(mo)e™*
v(r,0,2,t) = V(r,z)sin(m0)e"" (25)
w(r,0,z,t) = W(r,z)cos(md)e™"

The circumferential dependence of the displacement components is
expressed using orthogonal trigonometric functions, with u and w
expanded in terms of cos(m6) and v in terms of sin(m0). This choice
ensures periodicity and orthogonality of circumferential modes and
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represents an equivalent modal description. The coupling between
circumferential and torsional vibrations is inherently captured through
three-dimensional strain components included in governing equations.

The displacement field formulation incorporates the circumferential
mode number m and circular frequency w, allowing different vibration
modes m to be treated independently. For axisymmetric vibration m = 0,
pure torsional modes can be obtained by interchanging the cos(k6) and
sin(k0) functions in the modal representation. The displacement shape
function matrix @ in Eq. (22) is derived from Eq. (1), where the nodal
displacements u follow the modal decomposition specified in Eq. (25).
This formulation separates the spatial and temporal components of vi-
bration, with ® capturing the spatial mode shapes while @ governs the
harmonic time dependence:
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4. Results

This section presents and examines the results of free vibration and
thermal buckling analyses for cylindrical shells with variable thickness,
obtained using the RPIM. The effects of thickness variations on natural
frequencies and critical buckling loads under different boundary con-
ditions are first analyzed. Subsequently, the role of uniform temperature
distributions in the thermal stability of the shells is evaluated. The ob-
tained results are quantitatively and qualitatively compared with
reference data, and the influences of geometric and thermal parameters
on the dynamic and buckling behavior of the shells are discussed in
detail. To account for the influence of boundary conditions on the free
vibration and thermal buckling behavior of cylindrical shells, four
distinct boundary conditions are considered: clamped (C), simply-

¢, cos(kO) 0 0 ¢cos(k0) 0 0
@] = 0 ¢,sin(k0) 0 . 0 ¢,sin(ko) 0 (26)
0 0 ¢ cos(kf) ... 0 0 ¢p,cos(k9)

Note that the integration along the 6-direction is carried out
analytically, as the shape functions are independent of 6.

After discretization using the meshless method and applying Ham-
ilton's principle and the calculus of variations, the governing equations
for free vibration and thermal buckling of cylindrical shells are obtained
in the form of the following eigenvalue equations:

Mt + (K+Km)u=F 27)

where

M= / p®d DAV (28)

K= / B'DBdv (29)

K[h = /(DTGth(I’dV (30)

F / o4V — / O7f,dA G
v A

Consequently for free vibration and thermal buckling problems
without body forces, the standard eigenvalue problem be solved as:

(K—*M)(u) =0 (32)

(K — A Ke)(u) = 0 (33)

For convenience and comparison purposes, the critical thermal
buckling temperature is expressed in terms of a nondimensional critical
temperature parameter, defined as

EAT,,
i _a g
1-v

(34

Here, AT, denotes the critical temperature increment corresponding
to the onset of thermal buckling, at which the cylindrical shell loses its
stability under uniform thermal loading. This parameter is adopted
throughout the thermal buckling results to examine the effects of
thickness variation, geometric ratios, and boundary conditions in a
unified and dimensionless manner.

supported Type-I (SS-SS Type-I), simply-supported Type-II (SS-SS
Type-II), and free (F). The simply-supported boundary conditions are
defined as follows:

u(r,0,z,t) =v(r,0,2,t) = 0 6,(r,0,2,t) =02 =0,L (35a)

v(r,0,2,t) =w(r,0,2,t) =0 0,(r,0,2,t) =0 2=0,L (35b)

The boundary conditions SS-SS Type-I and SS-SS Type-II correspond
to two standard idealizations of simply supported cylindrical shells
commonly adopted in the literature. While both configurations prevent
rigid-body motion and allow free rotation, they differ in the imposed
axial displacement and shear traction constraints. These definitions are
consistent with classical shell vibration formulations and are introduced
to examine the sensitivity of the dynamic response to boundary
modeling assumptions.

4.1. Variable thickness thin cylindrical shell

A cylindrical shell with radius r = 1 m, Ly=0.8 m thickness hy = 0.01
m, and length L—Ly=0.2 m is analyzed. The material properties are
specified as: Young's modulus E=70 GPa, Poisson's ratio v=0.3, and mass
density p = 2700 kg/m?>.

The frequency parameter @, defined as:

2
oy =1 12009 (@*(a/1)*-1) 36)
7 (a/L)%(ho/L)
where the dimensionless frequency is Q = wpL+/p/E.

In the numerical simulations, the stretching parameters controlling
the non-uniform nodal distribution are selected within the ranges
f=1.2—1.8 for the axial direction and y=1.5—1.7 for the radial (thick-
ness) direction, which are found to provide stable convergence and
sufficient resolution of thickness-induced stress gradients.

A series of numerical tests were conducted by varying d. and q within

Table 1
Sensitivity of MQ-RPIM shape parameters on numerical accuracy and stability.

de q Conditioning of moment matrix Change in first natural frequency
0.5 1.0 Poor (ill-conditioned) Unstable / non-convergent

1.0 1.5 Moderate <1.2%

2.0 1.5 Well-conditioned < 0.3%

3.0 2.0 Stable but over-smoothed < 0.5%

50 2.0  Stable < 1.0%
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Table 2
Frequency parameter w, for thickness variation parameter p = 1 and C-C
boundary condition.

N; N, wpl ®p2 ®p3 wp4

17 46 7.138 11.6535 16.1233 20.4324
47 7.138 11.6532 16.1228 20.4317
48 7.138 11.6533 16.1233 20.4322
49 7.138 11.6533 16.1234 20.4315
50 7.137 11.6528 16.1224 20.4314
51 7.137 11.6518 16.1212 20.4303

18 46 7.139 11.6546 16.1260 20.4384
47 7.139 11.6542 16.1269 20.4395
48 7.138 11.6542 16.1274 20.4373
49 7.138 11.6538 16.1266 20.4364
50 7.138 11.6542 16.1259 20.4373
51 7.138 11.6541 16.1249 20.4386

19 46 7.139 11.6574 16.1298 20.4455
47 7.139 11.6570 16.1291 20.4450
48 7.139 11.6566 16.1298 20.4444
49 7.139 11.6561 16.1293 20.4440
50 7.139 11.6560 16.1288 20.4447
51 7.137 11.6536 16.1248 20.4389

20 46 7.139 11.6560 16.1289 20.4443
47 7.138 11.6559 16.1284 20.4437
48 7.138 11.6556 16.1286 20.4433
49 7.138 11.6553 16.1282 20.4431
50 7.138 11.6547 16.1281 20.4435
51 7.138 11.6548 16.1276 20.4431

21 46 7.139 11.6575 16.1319 20.4489
47 7.139 11.6575 16.1317 20.4490
48 7.139 11.6572 16.1314 20.4483
49 7.139 11.6568 16.1309 20.4477
50 7.139 11.6566 16.1305 20.4479
51 7.139 11.6563 16.1309 20.4478

Table 3

Validation of the proposed RPIM formulation through comparison of frequency
parameter wj, for a thick cylindrical shell with linear varying thickness (p=1).

Method Frequency parameter
First Second Third Fourth
mode mode mode mode
Ref [54] 7.1315 11.8397 16.5768 21.3127
FEM [54] 7.1386 11.6574 16.1354 20.4568
Proposed method 7.1389 11.6563 16.1309 20.4478
Difference with Ref [54] 0.10 -1.57 -2.76 -4.23
(%)
Difference with FEM 0.00 -0.01 -0.03 -0.04
[54] (%)
3.5 \\( I I I
\v&%\\x\)&
3 k[ =0, Thin MN

—<—— C-C
B —-eo—o— (C-F
-0—0- SS-SS (Type-I)
—o—=o— S8-8S (Type-1I)
2 TH*Q‘O—D%OQO‘O_O;

2.5

Fundamental frequency, (o)

_ O ——— O — 00—
M—U:E._._._.__.—._‘r
1.5F -

l 1 1 1
-1 -0.5 0 0.5 1

Thickness variation parameter, (p)

(@)
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commonly accepted ranges to evaluate their influence on the condi-
tioning of the moment matrix and on the computed natural frequencies.
The objective was to identify a stable parameter region where the results
become insensitive to further parameter variation while avoiding ill-
conditioning. As summarized in Table 1, excessively small values of d,
lead to ill-conditioned interpolation matrices and numerical instability,
whereas overly large values result in over-smoothed approximations
with reduced accuracy. Within an intermediate stable region, the
computed natural frequencies exhibit negligible sensitivity to changes in
the MQ parameters. In particular, variations of d. and g within this re-
gion result in changes of less than 0.3% in the first natural frequency,
indicating a numerically converged and robust solution. Based on this
observation, the parameter values highlighted in Table 1 were adopted
in the present study to ensure a balanced compromise between accuracy
and computational stability.

Table 2 reports the convergence behavior of the present RPIM dis-
cretization for a variable-thickness thin cylindrical shell with thickness
variation parameter p=1 under clamped-clamped (C-C) boundary
conditions. N, and N, denote the number of nodes in the radial r and
axial z directions, respectively. The first four frequency parameters
®p1—wps, defined based on w, measure introduced in Eq. (36), are listed
to assess numerical stability. The results exhibit negligible changes as N,
and N, increase, indicating a well-converged solution and confirming
that the adopted nodal discretization provides sufficient spatial resolu-
tion for accurate vibration prediction in the considered variable-
thickness configuration.

Table 3 compares the frequency parameter wj, of a thick cylindrical
shell with linear varying thickness (p=1) obtained by the proposed
RPIM-based formulation with the benchmark three-dimensional elas-
ticity solutions reported by Duan and Koh [54] and the corresponding
FEM results. For the first vibration mode, the difference between the
present results and both reference and FEM solutions is negligible
(below 0.1%), indicating excellent accuracy. As the mode order in-
creases, slightly larger discrepancies are observed due to increased
modal complexity; however, even in the worst case (fourth mode), the
maximum deviation between the present results and the reference so-
lution remains limited to approximately 4.23%, while the difference
with FEM results does not exceed 0.04%. These results demonstrate that
the proposed method achieves FEM-level accuracy and reliably re-
produces benchmark solutions, thereby validating its suitability for
dynamic and thermal stability analyses of cylindrical shells under
various boundary and thermal conditions.

The fundamental frequency parameters for axisymmetric (m=0) and
non- axisymmetric (m=1) vibration modes are presented in Figs. 2a and
2b, respectively, as functions of the thickness variation parameter for a
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Fig. 2. Fundamental frequency (p) of thin-walled cylindrical shell in terms of thickness variation parameter for different boundary conditions for (a) m=0, (b) m=1.
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thin-walled cylindrical shell under different boundary conditions. The
results indicate that under the clamped-clamped (C-C) boundary con-
ditions, the natural frequency reaches its highest value, and as the
thickness parameter increases from -1 to +1, the frequency decreases
significantly. In the C-C case, the natural frequency decreases by
approximately 20% when the thickness parameter changes from -1 to
+1, whereas in the SS-SS Type-II case, the frequency variation is less
than 5%. Under clamped-free (C-F) boundary conditions, a decreasing
trend in frequency is also observed, but the extent is smaller. For simply
supported Type-I (SS-SS Type-I) boundary conditions, the natural fre-
quency is relatively lower and shows a slight increase as the thickness
parameter rises. In contrast, under simply supported Type-II (SS-SS
Type-II) conditions, the natural frequency remains nearly constant, with
no significant change due to variations in thickness. These results
demonstrate the significant influence of the variable thickness param-
eter and boundary condition type on the vibrational response of cylin-
drical shells, highlighting the importance of considering these factors in
structural analyses. As seen in Fig. 2(b), in the non-axisymmetric (m=1)
case under clamped-clamped (C-C) boundary conditions, the natural
frequency exhibits a slight decrease with increasing thickness param-
eter, though this change is less pronounced compared to the
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axisymmetric case.

Under SS-SS boundary conditions particularly Type-II the natural
frequency remains nearly constant, with thickness variation having little
effect. These findings indicate that non-axisymmetric modes are less
sensitive to thickness changes, and the vibrational behavior depends
more strongly on boundary conditions. This further emphasizes the
critical role of boundary condition and geometric parameters in the
dynamic response of cylindrical shell structures.

Boundary conditions determine how much a shell can move or rotate
at its edges; these constraints directly influence stress distribution,
deformation, and vibrational behavior. When the shell's thickness var-
ies, it's bending stiffness and mass distribution change across different
sections. In C-C boundary conditions, the edges are highly restrained, so
even slight changes in thickness distribution immediately translate into
significant shifts in the system's overall stiffness and consequently, in its
natural frequencies. However, under free or simply supported boundary
conditions (especially Type-II, which allows greater freedom of move-
ment), the edges permit more displacement and rotation. As a result,
thickness variations have a weaker effect on the overall vibrational
response. Simply put, the more constrained the boundary conditions, the
more sensitive the system becomes to geometric changes (such as
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Fig. 3. Frequency parameter (o,) in terms of circumferential wave number of thin-walled cylindrical shell for (a) C-C (b) C-F (c) SS-SS Type-I (d) SS-SS Type-II

boundary conditions.
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Table 4
Frequency parameter w, under C—C boundary condition of thick cylindrical
shell for p = 0.

N, N, m Q1 m Q1 m Q1
10 18 0 1.572 1 1.312 2 1.594
19 1.572 1.311 1.594
20 1.572 1.311 1.593
21 1.572 1.311 1.593
22 1.571 1.310 1.593
23 1.571 1.310 1.592
11 18 1.571 1.312 1.595
19 1.571 1.311 1.594
20 1.571 1.311 1.594
21 1.571 1.311 1.593
22 1.571 1.310 1.593
23 1.571 1.310 1.593
12 18 1.571 1.312 1.595
19 1.571 1.311 1.595
20 1.571 1.311 1.594
21 1.571 1.310 1.594
22 1.571 1.310 1.594
23 1.571 1.310 1.593
Exact 1.571 1.308 1.594

variable thickness). Conversely, with freer or less restrictive boundaries,
this sensitivity decreases, and the system's response depends more on
edge mobility. Thus, the influence of shell thickness variations on
vibrational behavior is directly linked to the degree of constraint or
freedom in the boundary conditions. This explains why clamped shells
show strong frequency shifts with thickness changes, while simply
supported or free-boundary shells exhibit minimal variation.

Figs. 3a-3d illustrate the variation of the frequency parameter with
respect to the circumferential wave number for different thickness
variation parameters under C—C, C—F, SS—SS Type-I, and SS—SS Type-II
boundary conditions, respectively. The results reveal that under
clamped-clamped C—C boundary conditions, the frequency parameter
exhibits significant variations when the thickness parameter is altered,
regardless of the circumferential wave number. In contrast, for simply
supported SS—SS Type-I and SS—SS Type-II boundaries, the frequency
parameter remains relatively insensitive to thickness variations at low
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circumferential wave numbers, but the differences become more pro-
nounced as the wave number increases. Interestingly, the clamped-free
C—F boundary condition displays a distinct behavior, while the overall
variation in the frequency parameter is substantial, the differences
caused by thickness changes remain relatively small across all circum-
ferential wave numbers. These findings highlight the strong influence of
both thickness variation and boundary conditions on the vibrational
response of thin cylindrical shells. Additionally, unlike cylindrical shells
with uniform thickness, the lowest frequency in this study does not
consistently correspond to the first non-axisymmetric mode (m = 1).

4.2. Variable thickness thick cylindrical shell

A thick cylindrical shell with radius r = 1.5 m, hg = 0.1 m, L=10 m
and L — Lo = 4 is analyzed. This study presents, for the first time, a three-
dimensional investigation of natural frequencies for thick cylindrical
shells with varying thickness under different boundary conditions. To
validate the results, the frequency parameter w, is used, where r, rep-
resents the outer radius at z=L. For negative values of the thickness
variation parameter p, the shell thickness decreases toward one axial
end. To preserve geometric admissibility and physical relevance, the
minimum value of p is restricted to —0.4. For smaller values, the local
thickness becomes excessively small, leading to unrealistic shell geom-
etry and violating the applicability conditions of thick-shell modeling,
although the thickness remains mathematically positive. Therefore, the
chosen lower bound ensures a physically meaningful thickness distri-
bution and numerical robustness.

Table 4 summarizes the effect of axial thickness variation on the
frequency parameter wj, of the cylindrical shell under the C-C boundary
conditions. The results clearly demonstrate that the thickness gradient
parameter significantly influences the dynamic response, with
increasing thickness leading to higher stiffness and consequently higher
natural frequencies. This highlights the importance of considering var-
iable thickness distributions in realistic shell vibration analyses.

In Figs. 4 and 5, the effect of the thickness variation parameter and
boundary conditions on the frequency parameter w, at 25°C is shown. In
the thick-walled cylindrical shell, the minimum value of the thickness
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Fig. 4. Frequency parameter () of thick-walled cylindrical shell in terms of thickness variation parameter for different boundary conditions for (a) m=0, (b) m=1.
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Fig. 6. The effect of length-to-radius ratio (L/R) on the critical temperature
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variation parameter (p) is set to -0.4 due to geometric constraints. From
Fig. 4, which displays axisymmetric vibrations (m=0), it can be observed
that the frequency variation in the C-C, SS-SS Type-1, and SS-SS Type-II
boundary conditions is quite similar these boundary conditions have no
effect on the frequency and show a clear difference compared to the C-F
boundary condition. Additionally, the influence of the thickness varia-
tion parameter under these boundary conditions is similar but differs
from the C-F case. It is clearly seen that the thickness variation param-
eter in the C-F case has a stronger effect on the frequency compared to
other boundary conditions.

The natural frequency of vibrations under C-C, SS-SS Type-1, and SS-
SS Type-II boundary conditions remains nearly constant and indepen-
dent of the boundary conditions due to their strict constraints and edge
fixity. These boundary conditions impose strong restrictions on edge
displacements and rotations, stabilizing the distribution of vibrational
mode shapes in such a way that thickness variations cannot induce
significant changes in the overall structural stiffness. In fact, rigid
boundary constraints tightly control the shell's vibrational behavior,
homogenizing the effects of thickness variation across the structure. As a
result, localized thickness changes in axisymmetric modes which exhibit
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uniform vibration patterns have minimal impact on the natural fre-
quency. Thus, under these conditions, natural frequencies depend more
on local geometric variations (such as variable thickness) rather than on
boundary conditions or edge constraints. Moreover, when boundary
conditions are similar or closely related, their influence on natural fre-
quency becomes negligible, making the frequency appear independent
of boundary conditions. This phenomenon primarily occurs in axisym-
metric modes and relatively uniform structures, where the vibration
pattern is dominated more by geometric and material parameters than
by edge constraints.

On the other hand, a comparison between Fig. 4a and Fig. 2 reveals
that as the thickness changes from thin to thick, the trend of frequency
variation remains similar under C-C and SS-SS Type-I boundary condi-
tions but differs significantly under C-F and SS-SS Type-II conditions.
This suggests that frequency variations depend more on thickness than
on boundary conditions. However, these results do not hold for non-
axisymmetric vibrations (m=1), as illustrated in Fig. 4b. For all
boundary conditions except C-F, the natural frequency of non-
axisymmetric vibrations decreases as the thickness variation param-
eter increases. Additionally, it is evident that SS-SS Type-I and C-F
boundary conditions are more sensitive to thickness variations than the
other two boundary conditions.

4.3. Thermal effects

Fig. 6 illustrates the influence of the length-to-radius ratio L/R of
cylinders with variable thickness on the critical temperature parameter
Aer- The results indicate that as the L/R ratio increases, the critical
temperature parameter decreases significantly, demonstrating that
longer cylinders exhibit reduced thermal buckling resistance compared
to shorter ones. Additionally, variations in the thickness parameter p
from negative to positive values lead to a gradual decrease in A,
highlighting the detrimental effect of localized thickness increases on
thermal stability. The highest 1. value corresponds to L/R = 20, while
the lowest occurs at L/R = 50, confirming that shorter cylinders possess
superior thermal resistance compared to longer ones. These findings
underscore the critical role of geometric parameters and thickness var-
iations in the design of cylinders under thermal loading, necessitating
careful consideration in engineering analyses. As seen in Fig. 6,
increasing the thickness parameter p, which corresponds to localized
thickening, causes a gradual reduction in the critical temperature.
However, this decline eventually stabilizes, with i, converging to a
constant value. This behavior suggests that beyond a certain thickness
increase, further variations have a diminishing effect on thermal sta-
bility, and the system reaches a relatively steady state. Thus, excessive
thickness modifications beyond this threshold do not significantly alter
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the critical temperature, indicating that the influence of parameter p is
bounded.

Fig. 7 illustrates the effect of the radius-to-thickness ratio R/H in
cylindrical shells with variable thickness on the critical temperature
parameter. In this figure, four different cases of the radius-to-thickness
ratio (R/H = 20, 25, 50, 100) are examined for a fixed length-to-
radius ratio L/R = 20. As observed, as the thickness variation param-
eter p increases, indicating greater thickness inhomogeneity, the value
of the critical temperature parameter decreases. This reduction dem-
onstrates that thickness variation leads to a decrease in the thermal
stability of the shell.

Additionally, as the radius-to-thickness ratio R/H increases, meaning
thinner shells, the critical temperature parameter generally decreases,
indicating that thinner shells are more sensitive to thermal effects. In the
magnified section of the graph, the trend of the critical temperature
parameter decreasing at low values of the thickness variation parameter
p is displayed with greater precision, confirming a continuous and
noticeable decline in this parameter even with slight increases in
thickness variation. The parameter p represents the intensity of thick-
ness variation along the shell. When p is small, the thickness is nearly
uniform or exhibits minor variations, so the shell's thermal behavior is
less sensitive to the radius-to-thickness ratio R/H. However, as p in-
creases, thickness inhomogeneity becomes more pronounced, causing
certain sections of the shell to become thicker or thinner.

This inhomogeneity leads to a non-uniform distribution of stiffness
and mass in the shell, amplifying the effect of R/H. Shells with a large
radius-to-thickness ratio (thin shells) are more sensitive to thickness
variations and stiffness inhomogeneity due to their higher flexibility. At
higher values of p, where thickness varies significantly, this sensitivity
increases, resulting in more pronounced changes in the critical tem-
perature parameter. Thus, thin shells (high R/H) under substantial
thickness variation (hig hp) exhibit greater thermal instability, as re-
flected in the sharper decline of the critical temperature parameter.

4.4. Limitations of the meshless RPIM framework

Despite the flexibility and accuracy of meshless methods for prob-
lems involving smooth geometries and continuously varying material or
geometric properties, the present RPIM-based formulation exhibits
several limitations when applied to highly complex shell structures.
First, the accuracy of RPIM strongly depends on the appropriate

Table 5
Comparison between RPIM (Meshless Method) and FEM for shell structure
analysis.

RPIM (Meshless Method) FEM (Finite Element

Method)

Aspect

Element-based mesh
required

Requires remeshing or
special elements
High accuracy with
refined mesh

Strong capability and
mature tools
Well-established and
straightforward
Well-developed

Geometric discretization Node-based, no mesh
required

Highly flexible for smooth
thickness variation

High accuracy with
proper node distribution
Limited; requires special
treatment

More challenging for
complex boundaries
Limited without

Handling variable
thickness
Accuracy for smooth shells

Complex shell geometry
(cut-outs, sharp corners)

Boundary condition
enforcement

Large deformation and

strong nonlinearity
Computational cost (large-
scale problems)

Mesh distortion issues
Implementation

complexity
Typical application domain

additional formulation
Higher due to dense
interpolation matrices

Not applicable

Higher for complex
geometries

Smooth shells, graded
thickness, vibration/
buckling

nonlinear formulations
Generally more
efficient for large
models

May occur for large
deformations

Lower due to
commercial solvers
General-purpose
structural analysis




R. Pilafkan and V.A. Maleki

selection of support domain size, radial basis function parameters, and
node distribution. For shells with severe geometric irregularities, sharp
curvature transitions, or localized thickness discontinuities, improper
parameter selection may lead to reduced accuracy or numerical insta-
bility. Second, while the meshless framework avoids mesh distortion
issues commonly encountered in finite element methods, the imposition
of complex boundary conditions on intricate shell edges or multi-
connected domains remains challenging. The enforcement of displace-
ment and traction constraints in RPIM generally requires additional
treatments, which may increase implementation complexity for shells
with non-standard boundaries. Third, the current formulation is devel-
oped under the assumption of moderate deformation and linear elastic
material behavior. Consequently, its direct applicability to shells expe-
riencing extremely large deformations, severe geometric nonlinearities,
material plasticity, or damage evolution is limited without further
extension of the governing equations and numerical scheme.

Finally, compared to conventional finite element approaches,
meshless methods may incur higher computational cost for large-scale
problems due to the construction and inversion of dense interpolation
matrices. This aspect may restrict their efficiency when analyzing very
large or highly detailed shell models unless advanced numerical accel-
eration techniques are employed.

Therefore, while the present RPIM framework is well suited for
three-dimensional vibration and thermal buckling analysis of cylindrical
shells with smoothly varying thickness, caution should be exercised
when extending it to shells with highly complex geometries, severe
deformities, or strongly nonlinear material behavior. As summarized in
Table 5, the meshless RPIM framework offers distinct advantages for
shell structures with smooth geometry and continuously varying thick-
ness, particularly by avoiding mesh distortion and remeshing diffi-
culties. However, for shells with highly complex geometries, sharp
discontinuities, or severe deformation patterns, conventional FEM re-
mains more robust due to its mature boundary enforcement techniques
and well-established nonlinear formulations. The present study there-
fore focuses on a class of cylindrical shells for which RPIM provides an
efficient and accurate alternative, while acknowledging that FEM may
be more suitable for more geometrically intricate shell configurations.

5. Conclusions

This study presents a unified three-dimensional meshless RPIM
framework for the vibration and thermal buckling analysis of cylindrical
shells applicable to both thin and thick regimes. By directly modeling
the three-dimensional displacement field, the proposed approach pro-
vides a consistent formulation without the need for thickness-dependent
shell theories. The accuracy of the method is validated through com-
parisons with a well-established three-dimensional elasticity-based
benchmark solution and independent three-dimensional finite element
results, which is particularly relevant given the limited availability of
benchmark data for thick cylindrical shells.

The results demonstrate that the proposed method achieves high
accuracy for thin shells and maintains robustness for thick shells through
appropriate nodal refinement in the thickness direction. Parametric
studies reveal that thickness variation significantly affects both vibra-
tion characteristics and thermal stability. In particular, the critical
temperature increases with the thickness variation parameter p and
reaches a saturation regime at approximately pa6, beyond which
further increases in p have negligible influence. While the absolute
critical temperature depends on the geometric ratios L/R and R/H, the
saturation threshold with respect to p remains nearly unchanged for the
range of geometries considered.

The meshless nature of the proposed formulation offers enhanced
flexibility for modeling variable thickness distributions and complex
boundary conditions, making it a promising alternative for advanced
shell dynamics and thermal stability analyses. The present study is
limited to shells with smooth geometric variation and quasi-static
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uniform thermal loading; extensions to transient thermal effects, ther-
mal cycling, and more complex geometries are identified as important
directions for future research.
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