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A B S T R A C T

Many papers have studied the free vibration of graphene sheets. However, all this papers assumed their atomic
structure free of any defects. Nonetheless, they actually contain some defects including single vacancy, double
vacancy and Stone-Wales defects. This paper, therefore, investigates the free vibration of defective graphene
sheets, rather than pristine graphene sheets, via nonlocal elasticity theory. Governing equations are derived
using nonlocal elasticity and the first-order shear deformation theory (FSDT). The influence of structural defects
on the vibration of graphene sheets is considered by applying the mechanical properties of defective graphene
sheets. Afterwards, these equations solved using generalized differential quadrature method (GDQ). The small-
scale effect is applied in the governing equations of motion by nonlocal parameter. The effects of different defect
types are inspected for graphene sheets with clamped or simply-supported boundary conditions on all sides. It is
shown that the natural frequencies of graphene sheets decrease by introducing defects to the atomic structure.
Furthermore, it is found that the number of missing atoms, shapes and distributions of structural defects play a
significant role in the vibrational behavior of graphene. The effect of vacancy defect reconstruction is also
discussed in this paper.

1. Introduction

Experimental and theoretical studies in the fields of microstruc-
tures and nanostructures increased substantially after the synthesis
and characterization of carbon nanotubes by Iijima in 1991 [1].
Eventually, with the development of these fields, graphene sheets drew
attentions to themselves, because of their unique mechanical, electrical
and electronic properties. Nowadays, graphene sheets are widely used
in nano-sensors, nano-oscillators, electrical batteries, nano-compo-
sites, and nano-electromechanical resonators [2,3]. As a result, in-
vestigating the mechanical characteristics of graphene sheets is in-
evitable.

Among various mechanical characteristics of graphene sheets, their
vibrational behavior is of great importance. Due to difficulties in
conducting experiments to determine the mechanical properties of
graphene sheets, generally analytical methods, numerical modelings,
and molecular dynamics simulations are used to determine their
vibrational characteristics. Up until now, several studies have been
done on the vibration of graphene sheets. Murmu and Pradhan [2]
employed an analytical method using the separation of variables to
investigate the effect of nonlocal parameter on the vibration of
graphene sheets. Pradhan and Phadikar [4] calculated natural frequen-

cies of graphene sheets analytically by modifying the classical lami-
nated plate theory (CLPT) and the first shear deformation theory
(FSDT) using nonlocal elasticity theory. Hosseini-Hashemi et al. [5]
used the Mindlin theory and introduced some potential and auxiliary
functions to study the free vibration of graphene sheets. Zhang et al. [6]
implemented an element-free kp-Ritz to investigate the free vibrational
behavior of a single-layered graphene sheet (SLGS). Moreover, Zhang
et al. [7] used nonlocal elasticity theory and CLPT to study the
vibrational behavior of bilayer graphene sheets (BLGSs) in a magnetic
field.

Zhang et al. [8] also analyzed nonlinear large deformation of SLGSs
using an element-free kp-Ritz. Zhang et al. [9] studied the transient
analysis of SLGSs via an element-free kp-Ritz method. Ansari et al. [10]
implemented the finite element method (FEM) to analyze the free
vibration of multi-layered graphene sheets. Ansari et al. [11] investi-
gated the vibration of single-layered graphene sheets (SLGSs) using a
nonlocal continuum plate model and then validated the calculated
results with ones obtained by the molecular dynamics simulations.
Pradhan and Kumar [12] studied the small-scale effect on the vibration
analysis of orthotropic SLGSs. They employed the differential quad-
rature method (DQM) to solve governing equations derived using the
nonlocal elasticity theory. Xing and Liu [13] found exact solutions for
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the free vibration of thin orthotropic rectangular plates. This problem
solved for various boundary conditions and validated with results
obtained by FEM. Setoodeh and Malekzadeh [14] investigated the free
vibration analysis of orthotropic SLGSs using the nonlocal Mindlin
plate theory and employing the DQM.

On the other hand, graphene sheets are assumed perfect, i.e.
without any defects, in the aforesaid papers. Nonetheless, mass
production of perfect graphene sheets can be a formidable task [15];
hence, structural defects do exist in graphene, like in any other real
material [16]. Researches have showed that even a small number of
defects in the atomic structure can deteriorate the mechanical and
electronic properties of graphene materials [17]. Furthermore, defec-
tive graphene sheets can be useful in some applications. For instance,
they enable scientists to tailor the local properties of graphene and to
achieve new functionalities [16]. Therefore, the investigation of me-
chanical and electrical properties of graphene sheets seems necessary.

The mechanical and electrical properties of graphene materials
including Young's modulus, fracture strength, and electrical conduc-
tivity have been studied so far. For instance, Jing et al. [15]
investigated the effect of defects such as vacancy and Stone-Wales
defects on the Young's modulus of graphene sheets via molecular
dynamics. Xiao et al. [17] employed an atomistic based finite bond
element model for the prediction of fracture and progressive failure of
graphene sheets and carbon nanotubes. Xiao et al. [18] used the same
method to investigate the tensile behavior of graphene sheets and
carbon nanotubes with multiple Stone-Wales defects. Wang et al. [19]
utilized molecular dynamics simulations to study the fracture of
graphene sheets with vacancies and Stone-Wales defects at different
temperatures. Ansari et al. [20] studied the effects of two main types of
structural defects, i.e. Stone-Wales and single vacancy, on the mechan-
ical properties of single-layered graphene sheets (SLGSs). Banhart
et al. [16] reviewed the various structural defects in graphene.
However, the effect of structural defects on the vibrational behavior
of graphene sheets has not yet been investigated.

The structural defects can be introduced to graphene sheets by
either material production process or chemical treatment [15,16]. They
generally can be classified into three categories: incomplete bonding
defects, topological defects, and heterogeneous defects [15]. In this
work, for the first time, the atomic structures of graphene sheets used
in the vibration analysis are considered defective rather than perfect. In
other words, the effects of Stone-Wales (SW), single vacancy (SV), and
double vacancy (DV) defects on the free vibration of SLGSs are studied.
On the other hand, local continuum modeling can successfully explain
and predict physical phenomena at the macro-scale level; nevertheless,
its application in nano-scale remains questionable because the applic-
ability of classical field theories is correlated with length scales and for
accurate prediction of the mechanical behavior of nanomaterials the
small scale effect must be taken into account. As a result, usually, the
nonlocal elasticity theory is used in modeling the structures at nano-
scale instead of classical elasticity theory [21]. Hence, in this work, the
nonlocal elasticity theory and the first-order shear deformation theory
are employed to obtain the governing equations. The mechanical
properties of defective graphene sheets are applied to the equations
in order to consider the influence of defects on the vibration of SLGSs.
Subsequently, the governing equations are written in GDQ form and
then solved using GDQ method; as a result, the natural frequencies
corresponding to the different boundary conditions and defect types
are calculated and compared with each other to indicate the effect of
various types of defects on the vibration of SLGSs. Finally, free
vibrations of SLGSs with reconstructed defects are investigated.

2. Nonlocal plate governing equations

As mentioned in the previous section, the FSDT is used in order to
establish governing equations. In this theory, both shear deformations
and rotational inertia are taken into account. As a result, despite CLPT,

transverse normals (i.e., straight lines perpendicular to the midsurface)
do not remain perpendicular to the midsurface after deformation [22].
Fig. 1 shows the coordinate system for the SLGS. As shown in the
figure, z = 0 plane is the middle plane of the SLGS. Considering FSDT,
displacement field for the plate can be expressed as [22]:

u x y z t u x y t zψ x y t( , , , ) = ( , , ) + ( , , )x x (1)

u x y z t v x y t zψ x y t( , , , ) = ( , , ) + ( , , )y y (2)

u x y z t w x y t( , , , ) = ( , , )z (3)

Where u u u, andx y z are displacements of an arbitrary point on z = 0
plane in x y z, and directions and u v w, , are displacements of an
arbitrary point x y z( , , ) in x y z, and directions, respectively.
Additionally, ψ ψ,x y are rotations about x y, Axis, respectively.

The strains are obtained as follows [22]:
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ε ε ε, ,xx yy zz and ε ε ε, ,xy xz yz denote normal and shear strain tensor
components, respectively. It should be noted that ε = 0,zz because it
was assumed that the transverse normals are inextensible.

Furthermore, based on nonlocal elasticity theory stress at any point
in a continuum is a function of strain at all points of the continuum
[23]. Accordingly, the constitutive relation in the small scales is written
as follows [4]:

μ σ t(1 − ∇ ) =2 (6)

Where σ is nonlocal stress tensor, t is local stress tensor, and μ denotes
the nonlocal parameter.

Using Eq. (6) and based on the FSDT, one can obtain a relation
between the nonlocal stresses and strains for an isotropic plate [24]:
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Where E G, and υ are the young modulus, the shear modulus, and the
poisson's ratio, respectively.

On the other hand, the principle of virtual work can be applied to
derive the equilibrium equations of the SLGS [4]. Following governing
equations are obtained, using the principle of virtual work [4]:
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Fig. 1. Coordinate system for SLGS.
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Where N N N M M M Q Q, , , , , , andxx xy yy xx xy yy xx yy denote stress resultants,
which are defined as follows:
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Furthermore, I Iand1 3 are mass moments of inertia and defined as:
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Subsequently, (7) and (8) and (14)–(16) can be used to express
stress resultants in terms of the displacements:
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In these relations k = 5/6 is the shear correction factor.
Finally, using (18)–(22), (11)–(13) expressed in the terms of

displacements:
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It should be mentioned that (9), (10) and the terms including
q N N N, , andxx xy yy were eliminated, because it was assumed that the plate
is free from any in-plane or transverse loading [4].

3. Solution using generalized differential quadrature method

3.1. Generalized differential quadrature method

Generalized differential quadrature method is a numerical solution
technique for solving initial and boundary condition problems of a wide
range of engineering applications. It can be used as a convenient
alternative to the finite difference and finite element methods due to its
great accuracy and capability in solving complicated ordinary and
partial differential equations [25]. In summary, in this method N Nandx y

grid points are chosen in x yand directions, then partial derivative of a
function with respect to a coordinate (xor y) at a grid point is estimated
by weighted linear sum of values of that function in all grid points along
that direction. Therefore, r th derivative of function φ x y( , ) at point
x x= i and in direction y y= j can be obtained using the following
relation:

∑φ
x

A φ∂
∂

=
r

r
x x k

N

ik
r

kj
= =1

( )

i

x

(26)

Similarly, one can write:

∑φ
y

B φ∂
∂

=
s

s
y y l

N

jm
s

im
= =1

( )

i

y

(27)

Where A Bandik
r

jm
s( ) ( ) are weighting coefficients and φ φ x y= ( , ).ij i j

The weighting coefficients of the first derivatives are obtained from:
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Furthermore, the weighting coefficients of higher-order derivatives
are determined by:
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3.2. GDQ form of governing equations

To solve (23)–(25) using GDQ technique, these equations should be
rewritten in GDQ form. Since w ψ ψ, andx y were assumed as the periodic
functions, one can write:

x aX y bY= , = (30)
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Eventually, using (26)–(29) and substituting (30) and (31) in (23)–
(25) the following analogous equations can be obtained:
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3.3. Boundary conditions

In order to solve equation, applying the appropriate boundary
conditions is necessary. For the all edges clamped (CCCC) boundary
conditions, in which (C) refers to the clamped boundary conditions one
can write:
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The GDQ form of boundary conditions:
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For the all edges simply supported (SSSS) boundary conditions, in
which (S) refers to the simply supported boundary conditions the
following relations applied:
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3.4. Eigenvalue problem

Assembling (32)-(38) into an eigenvalue problem is the final step in
the GDQ solution procedure. This eigenvalue problem can be written as
the following matrix form:
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Where S S S S[ ], [ ], [ ]and[ ]dd db bd bb are the coefficient matrices of the left
hand side of (32)-(34) in which the subscript b dand refer to the
boundary and domain, respectively. M[ ]dd is the coefficient matrix of
the right hand side of (32)-(34). δ δ{ }and{ }d b are the displacement
vectors corresponding to the domain and boundary grid points.

Eigenvalues (i.e. natural frequencies,ω) and eigenvectors of (39) are
calculated using the condensation technique as follows [7]:

M S S S S δ ω I δ[ ]([ ] − [ ][ ][ ]){ } − [ ][ ] = 0dd dd db bb bd d d
−1 −1 2 (40)

4. Results and discussion

4.1. Effect of common structural defects on natural frequencies of
graphene sheets

In this research, for the first time, the effect of the most common
defects, including SV, DV, and SW defects, on the natural frequencies
of graphene sheets were studied. The SV and DV defects can be created
by removing one carbon atom and two neighboring atoms from a
pristine graphene sheet, respectively [15]. These defects are shown in
Fig. 2(a) and (b). The SW defect does not involve any removed or added

atom. In fact, it is formed by rotating a C-C bond by 90° and
consequently, transforming four hexagons into two pentagons and
two heptagons (SW (55–77)), as shown in Fig. 2(c) [16].

The graphene sheet is assumed isotopic in this work. Introducing
defects into graphene sheets merely influences its mechanical proper-
ties, especially its Young's modulus, rather than the governing equa-
tion. Thus, in this paper, the effect of defects is considered in the
governing equations via Young's modulus. The Young's modulus and
Poisson's ratio of the pristine graphene sheet are considered
1.032TPa, 00.3, respectively [4,15]. Also, the thickness of each plate
and the density of the graphene are assumed h = 0.34nm and
ρ m= 2300 kg/ .3 Values of Young's modulus for various defective
graphene sheets are obtained by Jing et al. [15]. These values are used
in this paper. In order to employ the Young's moduli provided by Jing
et al. [15] properly, the side lengths of graphene sheets are considered
5.823nmand50.904 nm, respectively.

The convergence study and the validation of GDQ method are
conducted for a perfect SLGS (i.e. SLGS with no defects), since there is
no previous data available for the natural frequencies of defective
graphene sheets. First, the convergence study for the GDQ technique is
conducted. To achieve this goal, the fundamental frequency is calcu-
lated for a square pristine SLGS with side length of 10 nm and SSSS
boundary conditions for both local μ( = 0) and nonlocal μ( = 1(nm) )2

assumptions. Table 1 shows the fundamental frequencies for various
number of grid points chosen along each axis. It can be noted from
Table 1 that after employing 11 grid points results converge and there
is no need for further increasing in the number of grid points.

Subsequently, the natural frequencies obtained in present work
using the GDQ method for both local and nonlocal plate are listed in
Table 2 and compared with exact solutions [4]. They are acquired for a
square isotropic pristine SLGS with 10 nm side length and all edges
simply supported boundary conditions. From this table, one could find
that present results are in good agreement with those of the exact
solution [4].

Fig. 2. Structural defects in graphene sheets (a) SV defect (b) DV defect (c) SW defect
(55–77).
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The nonlocal parameter plays an eminent role in the calculation of
natural frequencies for a small graphene sheet based on the nonlocal
elasticity theory. Hence, in order to implement nonlocal elasticity
theory, determining this parameter is inevitable. Ansari et al. [11]
proposed an optimization technique to determine the value of nonlocal
parameter. Using this method they proposed 1.41 and 0.87 for SLGSs
with SSSS and CCCC boundary conditions, respectively [11]. These
values are suggested for pristine graphene sheets. However, there is no
such data available for defective graphene sheets. As a result, in this
paper, these values will be used as approximate values to calculate the
natural frequencies via nonlocal elasticity theory and observe the effect
of defects on vibrational behavior of graphene sheets.

First natural frequencies of graphene sheets with SSSS boundary
conditions and SV, DV, and SW defects, which are obtained using the
nonlocal elasticity, were compared in Fig. 3. The defect degree of
vacancies is defined as the density of atoms removed from the pristine
graphene sheets. On the other hand, for SW dislocation, it is defined as
the density of defected atoms (each SW defect includes two defected
atoms). It can be seen that the value of fundamental frequency
decreases by introducing any type of defect into the perfect graphene
sheet. Additionally, as expected, increasing the defect degree leads to
the reduction of the fundamental frequency. However, the influence of
defect degree is far more obvious for SV and DV defects. Furthermore,
the fundamental frequency of graphene with SV defect is much smaller
than that of graphene with DV defect, for the same value of defect
degree, since it has more dangling bonds. The same behavior can be
observed for CCCC boundary conditions, as shown in Fig. 4.

The effects of various defect types on the natural frequencies of
graphene sheets with SSSS and CCCC boundary conditions (corre-
sponding to different mode sequences) are displayed in Figs. 5 and 6.
These figures indicate that defects affect all natural frequencies of
graphene sheets in a similar way. In fact, all natural frequencies
decrease. Besides, SV and DV defects result in a lot more drop in the
natural frequencies. Moreover, again, one can observe the same trend
for both SSSS and CCCC boundary conditions. Therefore, for the rest of
this paper, there is no need to investigate graphene sheets with both
SSSS and CCCC boundary conditions; consequently, only graphene
sheets with SSSS boundary conditions will be investigated.

In addition, the effects of the number of missing atoms and their

distribution are investigated in Fig. 7. As shown in this figure,
increasing the number of missing atoms decreases the fundamental
frequency of graphene sheets dramatically. Further, one can infer that
for the same number of missing atoms, a SV cluster causes more
reduction in the fundamental frequency of a SLGS than a DV cluster.
Hence, more dispersive missing atoms lead into much lower natural
frequencies; therefore, not only the number of missing atoms but also
shapes and distributions of the structural defects play a crucial role in
how defects affect the fundamental frequency of graphene sheets.

Table 1
Convergence study of fundamental frequencies (THz) for the GDQ method.

Number of grid points local (μ=0) nonlocal (μ=1)

7 0.0624 0.0684
9 0.0623 0.0682
11 0.0623 0.0682
13 0.0623 0.0682
15 0.0623 0.0682

Table 2
Comparison of natural frequencies (THz) using the GDQ method with the exact solution (for a pristine SLGS).

local nonlocal

Mode number GDQ Exact (CLPT[4])a Exact (FSDT[4]) GDQ Exact (CLPT[4])a Exact (FSDT[4])

1 0.0623 0.0625 0.0624 0.0682 0.0684 0.0683
2 0.1384 0.1398 0.1390 0.1695 0.1709 0.1699
3 0.1384 0.1398 0.1390 0.1695 0.1709 0.1699
4 0.2010 0.2041 0.2022 0.2696 0.2730 0.2705
5 0.2371 0.2419 0.2391 0.3356 0.3409 0.3371
6 0.2371 0.2419 0.2391 0.3356 0.3409 0.3371

a
⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥ω D ρh ρh μ= ( + /( + [( ) + ( ) ])(1 + [( ) + ( ) ])mn

mπ
a

nπ
b

mπ
a

nπ
b

mπ
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1

12
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Fig. 3. Effect of defect degree and defect type on the fundamental frequency of graphene
sheets with SSSS boundary conditions.

Fig. 4. Effect of defect degree and defect type on the fundamental frequency of graphene
sheets with CCCC boundary conditions.
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4.2. Effect of vacancy defect reconstruction on natural frequencies of
graphene sheets

Even though, the structures shown in the Fig. 2 are the initial
atomic structures of single and double vacancy defects in graphene
sheets they do not have the lowest potential energy. Thus, the lattice

may relax into a lower energy state by vacancy defect reconstruction,
which includes changing the bonding geometry [15]. This phenomenon
has been reported on carbon nanotubes [26]. Since graphene and
carbon nanotube have similar structures, one can suppose that this
reconstruction will occur in graphene sheets too [11]. This behavior in
graphene sheets has been also studied theoretically by El-Barbary et al.
[27] and Lee et al. [28]. The SV undergoes a Jahn-Teller distortion,
which results in the saturation of two of the three dangling bonds
toward the missing atom; the number of dangling bonds reduces to
one. As a result, a pentagon and a nonagon (nine-membered ring) are
formed (V1 (5–9)), as shown in Fig. 8(a) [16]. Similarly, double
vacancy defects may transform to three more stable reconstructed
defects, which contain far less dangling bonds.

The fundamental frequencies of graphene sheets with single and
double vacancy defects and their reconstructed forms are compared in
Figs. 9 and 10. As seen in Fig. 9, reconstruction increases the fundamental
frequency of graphene sheets with SV defects; nevertheless, the frequency
is still much lower than that of a perfect graphene. It is because of the

Fig. 5. Effect of various defects on the natural frequencies of graphene sheets with SSSS
boundary conditions.

Fig. 6. Effect of various defects on the natural frequencies of graphene sheets with CCCC
boundary conditions.

Fig. 7. Effect of number missing atoms and their distribution on fundamental frequency
of graphene sheets.

Fig. 9. Atomic structures of DV defects before and after reconstruction in graphene (a)
double vacancy (b) reconstructed DV V2(5-8-5) (c) reconstructed DV V2(555–777) (d)
reconstructed DV V2(5555-6-7777).

Fig. 8. Atomic structures of SV defects before and after reconstruction in graphene (a)
single vacancy (b) reconstructed SV (V1(5–9)).
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existence of dangling bonds in this reconstructed structure. On the other
hand, the reconstruction of the DV defects increases the fundamental
frequency of graphene sheets too; however, since there are no dangling
bonds in the reconstructed defects, this frequency is really close to that of
a pristine graphene (Fig. 11).

5. Conclusion

For the first time, a free vibration analysis of defective graphene
sheets was performed using the nonlocal elasticity theory. Since there is
no previous data available for the natural frequencies of defective
graphene sheets, validation of GDQ method for this case is investigated
using pristine graphene sheets, on which no defects present. It is shown
that for perfect graphene sheets, the fundamental frequencies obtained
by nonlocal elasticity theory are in good agreement with those reported
in the literature. The effect of the most typical defects, i.e. SV, DV, and
SW, on the vibrational characteristics of graphene sheets was studied.
It was observed that SLGSs with all types of defects have lower natural
frequencies compared to perfect SLGSs. In addition, the natural
frequencies reduce notably by increasing the defect degree; however,
this phenomenon is much more obvious for SLGSs with SV and DV
defects. Moreover, the fundamental frequency of graphene sheets with
SV defects is much smaller than that of graphene sheets with DV

defects, for the same value of defect degree, since they have more
dangling bonds.

Additionally, the effects of the number of missing atoms and
their distribution were investigated. It was shown that increasing
the number of missing atoms result in decreasing the natural
frequencies of graphene sheets. Further, for the same number of
missing atoms, one can infer that SV clusters cause more reduction
in the fundamental frequencies of SLGSs than DV clusters.
Therefore, it was indicated that not only the number of missing
atoms but also shapes and distributions of the structural defects play
a key role in how defects affect the natural frequencies of graphene
sheets.

Lastly, the effect of vacancy defect reconstruction on natural
frequencies of graphene sheets was investigated. It was shown that,
the reconstruction increases the fundamental frequencies of gra-
phene sheets with either SV or DV defects. Even though the obtained
frequency for the SLGS with the reconstructed SV defect is still far
smaller than that of the perfect graphene, this frequency is really
close to that of the pristine graphene for SLGSs with the recon-
structed DV defects.
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