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a b s t r a c t

This paper considers a functionally graded (FG) shell using a meshless radial point interpolation method
(RPIM). The material is assumed to be bidirectional FG, where the variation is present in both the radial
and the axial directions. Based on the three-dimensional equations of motion, the frequency equations
are stated using RPIM. Numerical results are presented for a thick shell for various boundary conditions.
These results illustrate the influence from the material variation concerning eigenfrequencies and
eigenmodes. In addition, the study shows that the RPIM is an efficient method to solve dynamical shell
problems.

� 2012 Elsevier Masson SAS. All rights reserved.

1. Introduction

The investigation of the governing equations for cylindrical
shells has been of great interest in the history of elastodynamic
theory. Most work consider modeling of thin shells using simplified
approximate theories (Leissa, 1973) due to the complexity of the
exact three-dimensional theory. However, in order to obtain
accurate results for thick shells there are needs to adopt the three-
dimensional theory. In the case of homogeneous isotropic shells,
such work are presented adopting the method due to Pochhammer
(1876) and Chree (1889), e.g. Gazis (1958) and Armenakas et al.
(1969). More recent solutions to homogeneous cylindrical shells
are presented using finite element methods (FEM) (Gladwell
and Vijay, 1975; Wang and Williams, 1996; Loy and Lam, 1999;
Buchanan and Yii, 2002), or series solution techniques (Hutchinson
and El-Azhari, 1986; McDaniel and Ginsberg, 1993; Hägglund and
Folkow, 2008), while So and Leissa (1997) use Ritz analysis.

Works on inhomogeneous shells, notably functionally graded
(FG) shells, have recently attracted much attention. Functionally
graded materials (FGM) are composite materials made of two (or

more) phases of material constituents, where the phase distribu-
tion varies continuously. The most used group of FGM consists of
ceramic and metal phases. Such FGM were developed in the mid
1980s where the strength of the metal and the heat resistance of
the ceramic made these materials well suited for high-temperature
environments. FGM also possess a number of other advantages
compared to other inhomogeneous materials such as improved
residual stress distribution, higher fracture toughness, and reduced
stress intensity factors. Hence, FGM are nowadays used in many
different fields of engineering (Birman and Byrd, 2007; Shen,
2009). FG shells are studied using various hypotheses such as
Love’s theory (Loy et al., 1999; Pradhan et al., 2000), first order
shear deformation theory (Kadoli and Ganesan, 2006; Ansari and
Darvizeh, 2008; Tornabene et al., 2009), higher order theory
(Patel et al., 2005) and three-dimensional theory (Vel, 2010; Asgari
and Akhlaghi, 2011). Among the work using three-dimensional
theory, a series solution technique is adopted by Vel (2010) while
FEM is used by Asgari and Akhlaghi (2011).

The vast majority of papers on FG structures consider material
gradation in one direction only. However, by developing structures
that are multidirectional functionally graded, it is possible to design
a material distribution that more efficiently fulfill engineering
demands such as resisting high-temperature environment in
several directions (Nemat-Alla, 2003). Another possible application
is to optimize the material configuration for a specific purpose, e.g.
to control eigenfrequencies. This latter case is the object for
studying bidirectional functionally graded beams by Goupee and

* Corresponding author. Tel.: þ46 31 7721521; fax: þ46 31 772 3827.
E-mail addresses: rezapilafkan@yahoo.com (R. Pilafkan), peter.folkow@

chalmers.se (P.D. Folkow), darvizeh@guilan.ac.ir (M. Darvizeh), adarvizeh@
guilan.ac.ir (A. Darvizeh).

1 Present address: Visiting researcher, Department of Mechanical Engineering,
Guilan University, PO Box 3756, Rasht, Iran.

Contents lists available at SciVerse ScienceDirect

European Journal of Mechanics A/Solids

journal homepage: www.elsevier .com/locate/ejmsol

0997-7538/$ e see front matter � 2012 Elsevier Masson SAS. All rights reserved.
http://dx.doi.org/10.1016/j.euromechsol.2012.09.014

European Journal of Mechanics A/Solids 39 (2013) 26e34



Author's personal copy

Vel (2006) and plates by Qian and Batra (2005). More recently,
a bidirectional functionally shell is presented by Asgari and
Akhlaghi (2011) for free-free boundary conditions.

Thementionedwork on bidirectional functionally graded beams
and plates (Goupee and Vel, 2006; Qian and Batra, 2005) use
meshless methods (MM) such as the element free Galerkin (EFG)
method and the meshless local PetroveGalerkin (MLPG) method,
respectively. Various other MM have also gained popularity for
solving elastodynamic problems the last decade, e.g. the repro-
ducing kernel particle method (RKPM) and point interpolation
methods (PIM). Comprehensive descriptions of different MM are
presented by Liu (2002) and Liu and Gu (2005) and in a review
paper by Nguyen et al. (2008).

In FEM the elements are connected together by nodes in
a predefined manner, while MM use scattered nodes not forming
a mesh. Moreover, the shape functions in MM are of higher order
that can change for each point of interest, contrary to predefined
low order element shape functions often used in FEM. Hereby
problems in FEM related to meshing and re-meshing (adaptive
analysis) procedures are more easily treated by MM. The draw-
back in MM is that the computational cost is usually higher than
FEM, and that several parameters may have to be chosen in
a delicate way.

The PIM have a convenient property as their shape functions
possess Kronecker delta behavior, which is not generally the case
for all MM. Among the different approaches using PIM, the radial
point interpolation method (RPIM) is a widely used method that is
known to render stable codes for arbitrary nodal distributions. The
RPIM has rather simple shape functions that are easy to differen-
tiate. Results presented in the literature show that RPIM often has
higher convergence rate and accuracy than traditional FEM (Liu and
Gu, 2005). The radial basis functions in RPIM could be of different
types, of which multiquadric (MQ) functions are the most used
since being generally superior to other functions like the Gaussian

radial function (EXP). It should be noted that these radial basis
functions involve several parameters to be chosen manually. It is
important to choose these carefully as they have pronounced effect
on the accuracy (Wang and Liu, 2002a,b; Liu et al., 2003, 2005).

There are several reports on dynamic shells using MM. Homo-
geneous shells are studied using various shell theories adopting
numerical methods such as the EFG method for Love’s theory (Liu
et al., 2002), a radial basis function method using Reddy’s third
order theory (Ferreira et al., 2006) and the natural neighbor radial
point interpolation method (NNRPIM) adopting the three-
dimensional equations of motion (Dinis et al., 2011). Concerning
FG shells, first order shear deformation theories are presented in
both Zhao et al. (2009) using an element-free kp-Ritz method, and
by Roque et al. (2010) using a radial basis functionmethod. Recently
a review with emphasis on EFG and RKPM for plates and shells is
presented by Liew et al. (2011).

There are to our knowledge no presented work using MM on
dynamic three-dimensional equations for FG shells. The object of
this paper is to use the RPIM with MQ radial basis functions on

a bidirectional FG shell according to the three-dimensional
dynamical equations of motion. Results for eigenfrequencies and
eigenmodes are presented using different boundary conditions.

2. Governing equations

Consider a cylindrical shell of length L with inner radius ri and
outer radius ro. Cylindrical coordinates are used with radial coor-
dinate r, circumferential coordinate q and axial coordinate z, where
the corresponding displacement fields are

u ¼ ½u v w �T : (1)

The cylinder is inhomogeneous, isotropic and linearly elastic
with density r(r,q,z), elastic moduli E(r,q,z) and Poisson’s ratio
nðr; q; zÞ.The elastodynamic shell equations are expressed

As ¼ r€u; (2)

where

s ¼ ½ srr sqq szz srq srz sqz �T ; (3)

and

A ¼
2
4v=vrþ1=r �1=r 0 1=rv=vq v=vz 0

0 1=rv=vq 0 v=vrþ2=r 0 v=vz
0 0 v=vz 0 v=vrþ1=r 1=rv=vq

3
5:
(4)

The stressestrain relation is written

s ¼ De; e ¼ ½ 3rr 3qq 3zz grq grz gqz �T ; (5)

where

The relation between strains and displacements are

e ¼ Lu; (7)

where the operator matrix L is defined

L ¼

2
6666664

v=vr 0 0
1=r 1=rv=vq 0
0 0 v=vz

1=rv=vq v=vr � 1=r 0
v=vz 0 v=vr
0 v=vz 1=rv=vq

3
7777775: (8)

Now, assuming n nodes in the support domain for a specific
point in the shell, the displacement field may be approximated
through

u ¼ Nbu; bu ¼ ½u1 v1 w1 . un vn wn �T : (9)

D ¼ E
ð1þ nÞð1� 2nÞ

2
6666664

1� n n n 0 0 0
n 1� n n 0 0 0
n n 1� n 0 0 0
0 0 0 ð1� 2nÞ=2 0 0
0 0 0 0 ð1� 2nÞ=2 0
0 0 0 0 0 ð1� 2nÞ=2

3
7777775: (6)
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Here the shape function matrix N used for the RPIM is discussed
further in Section 3. Introducing the strain-displacement matrix
operator B ¼ LN the strains and stresses can be written as

e ¼ Bbu; s ¼ DBbu: (10)

Consequently, by adopting variational calculus, the resulting set
of equations become

M€bu þ Kbu ¼ F; (11)

where

M ¼
Z
V

rNTNdV ; K ¼
Z
V

BTDBdV ;

F ¼
Z
V

NT fVdV þ
Z
A

NT fAdA:
(12)

The force term F involves possible body forces fV and surface
forces fA.

3. Radial point interpolation method (RPIM)

This section gives a brief description of the radial point inter-
polation method (RPIM) as presented in Liu and Gu (2005) and Liu
et al. (2005). Consider a scalar field h(x) in a 3D domain U. Assume
that N nodes at xi ði ¼ 1;2;.;NÞ are distributed throughout U. The
meshfree method is based on that the field h(x) at any point x is
interpolated using function values at field nodes within a local
support domain of the point x. As only the surrounding nodes effect
the field at that point, the nodes outside the domain have no
influence on it. This is written as

hðxÞ ¼
Xn
i¼1

JiðxÞbhi ¼ JT ðxÞbh; (13)

where n ¼ n(x) is the number of nodes within the local support
domain, while bhi is the nodal field variable and Ji(x) is the shape
function at the ith node. Similar to FEM, the shape function
possesses a Kronecker delta function property

Ji
�
xj
� ¼ dij0hðxiÞ ¼ bhi; (14)

and is of unity partition

Xn
i¼1

JiðxÞ ¼ 1: (15)

Note that the support domains can have different shapes,
although circular form is perhaps most often used. The shape
functions are obtained using radial basis functions

hðxÞ ¼
Xn
i¼1

RiðxÞai þ
Xm
j¼1

PjðxÞbj ¼ RTðxÞaþ PTðxÞb: (16)

Here Ri(x) are the n radial basis functions and Pj(x) are the m
polynomial basis functions in coordinates x, while ai and bj are
constants. The polynomial functions Pj(x) are included to improve

the accuracy and interpolation stability. The radial basis functions
Ri(x) depend on the distance s between x and a node at xi, that is

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xiÞ2þðy� yiÞ2þðz� ziÞ2

q
: (17)

There are a number of radial basis functions given in the liter-
ature, and the multiquadric (MQ) function used here has the form

RiðxÞ ¼
�
s2 þ ðacdcÞ2

�q
; (18)

where the influence from the shape parameters ac, dc and q are
investigated in the numerical examples. The polynomial basis
functions are

PðxÞ ¼ �
1 x y z x2 xy xz . PmðxÞ

�T
: (19)

The coefficients ai and bj are derived next. Using Eq. (14) in Eq.
(16) gives

bh ¼ bRaþ bPb; (20)

where the rows in these matrices consists of the vectors RT(xi) and
PT(xi)

bR ¼

2
6664
R1ðx1Þ R2ðx1Þ . Rnðx1Þ
R1ðx2Þ R2ðx2Þ . Rnðx2Þ
. . . .

R1ðxnÞ R2ðxnÞ . RnðxnÞ

3
7775;

bP ¼

2
6664

1 x1 y1 . Pmðx1Þ
1 x2 y2 . Pmðx2Þ
. . . .

1 xn yn . PmðxnÞ

3
7775:

(21)

In addition to these n equations for the (nþm) unknowns ai and
bj, the needed m extra equations are obtained through

bPT
a ¼ 0: (22)

Hence, by solving Eq. (20) adopting Eq. (22) it is possible to
express a and b in terms of bh, which may be used in Eq. (16) to give
a set of equation on the form Eq. (13).

3.1. RPIM for free vibrations of cylindrical shells

From now on, assume a fix frequency ansatz with frequency u.
Moreover, the material inhomogeneities are assumed to be inde-
pendent of the circumferential coordinate q. Consequently, the
cylindrical shell displacement fields may be written

uðr; q; z; tÞ ¼ Uðr; zÞcosðkqÞeiut ;
vðr; q; z; tÞ ¼ Vðr; zÞsinðkqÞeiut ;
wðr; q; z; tÞ ¼ Wðr; zÞcosðkqÞeiut ;

(23)

where k is the circumferential wave number. Hereby, the different
modes k become independent of each other, and can be treated
separately. Note that k ¼ 0 means the axisymmetric vibration. By
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mutually exchange the cose function to a sine function and vice
verse, the pure torsional mode is obtained for k ¼ 0. Adopting Eq.
(23) for the node displacements bu, the displacement shape func-
tion matrix N in Eq. (9) follows from Eq. (13) according to

where the shape functions Ji(r,z) are independent of q. Hence, by
using Eq. (24) in Eq. (11) for free vibrational problems without body
forces, this results in the standard eigenvalue problem�
K� u2M

�bu ¼ 0: (25)

4. Numerical results

In order to illustrate the RPIM applied to vibrational problems
on an inhomogeneous shell, eigenfrequencies for various boundary
conditions are presented for a functionally graded material (FGM).
The material consists of a metal and ceramic phase, which may be
graded in two dimensions: r and z. Denote the metal volume
fraction function Vm(r,z) and the corresponding ceramic volume
fraction Vcðr; zÞ ¼ 1� Vmðr; zÞ. These functions could be modeled
in numerous ways, but as an illustration consider the simple case

Vmðr; zÞ ¼
	
ro � r
ro � ri


nr
	
L� z
L


nz

: (26)

Here the power law exponents nr and nz are assumed to be non-
negative real numbers. According to Eq. (26), a pure metal phase is
obtained for nr¼ nz¼ 0, while a one-dimensional gradedmaterial is
modeled by setting only one of the exponents to zero. The general
bidirectional FG case corresponds to a continuously decreasing
metal volume fraction as r and z increase, resulting in pure ceramic
material at the outer radius r¼ ro and at the end z¼ L. Consequently
this material constitution could be applicable on a shell where the
outer surface and/or one of the ends are in a high-temperature
environment.

There are various methods to determine the material properties
in FG materials. Among these the rule of mixture (Voigt model) is
perhaps the simplest, while other theories such as the Morie
Tanaka model and the self-consistent model take microstructural
aspects into account, see discussion in Shen (2009). The Voigt
model assumes that the various effective material properties
(denoted by Q) are proportional to the volume ratio according to

Qðr; zÞ ¼ QmVmðr; zÞ þ QcVcðr; zÞ: (27)

The MorieTanaka model assumes that the effective density
r(r,z) follow from (27), while the elastic variables are obtained
through

K � Kc

Km � Kc
¼ Vm

1þ ð1� VmÞð3ðKm � KcÞ=ð3Kc þ mcÞÞ
; (28)

m� mc
mm � mc

¼ Vm

1þ ð1� VmÞðmm � mcÞ=ðmc þ f Þ; (29)

where

f ¼ mcð9Kc þ 8mcÞ
6ðKc þ 2mcÞ

: (30)

Here K is the bulk modulus K ¼ lþ 2m=3, where the Lamé
parameters are l ¼ En=ðð1� nÞð1� 2nÞÞ and m ¼ E=ð2ð1þ nÞÞ.
Although the results from the Voigt and the MorieTanaka models
differ to some extent, the overall behavior illustrated in the figures
below is similar for both theories. From now on, consider only the
MorieTanaka model.

As for the materials studied, the metal phase is aluminum (Al)
while the ceramic phase is silicon carbide (SiC), see properties in
Table 1. This pronounced difference in elastic moduli E between
materials imply that the eigenfrequencies are sensitive to the
material constitution. Hereby the eigenfrequencies for shells made
of pure SiC is almost 2.5 times the values for pure Al. Note that this
case differ from the similar shell problem addressed by Asgari and
Akhlaghi (2011), where there seem to be a confuse in the chosen
material data.

In order to see the effects from different boundary conditions on
the FG shell, the following four conditions are studied: clamped-
clamped (CC), free-free (FF) and two types of simply supported-
simply supported (SS1, SS2). The SS1 case is reported by
Buchanan and Yii (2002)

vðr; q; z; tÞ ¼ wðr; q; z; tÞ ¼ 0; srzðr; q; z; tÞ ¼ 0; z ¼ 0; L;
(31)

while the SS2 is the standard shear diaphragm case (Armenakas
et al., 1969)

uðr; q; z; tÞ ¼ vðr; q; z; tÞ ¼ 0; szzðr; q; z; tÞ ¼ 0; z ¼ 0; L:
(32)

The shell geometry is that of a thick shell with ro/ri ¼ 2 and L/
ro ¼ 2, also studied elsewhere (So and Leissa, 1997; Buchanan and
Yii, 2002; Asgari and Akhlaghi, 2011).

In the RPIM scheme, the solution is obtained for each k
according to the ansatz Eq. (23). The resulting two-dimensional
domain is discretized into regularly distributed node points in r and
z directions; nr � nz nodes. The choice of RPIM parameters, as well
as the number and distribution of nodes, are chosen from
comparing the eigenfrequencies when nr ¼ nz ¼ 0 to the results for
homogeneous thick shells presented by So and Leissa (1997) and
Buchanan and Yii (2002) for CC, FF and SS1 boundary conditions.
Here the RPIM parameters are obtained by systematically varying
the parameter values for a specific node configuration (6 � 10
nodes), from which a set of constants are chosen that are believed

Table 1
Material properties.

Material E (GPa) rðkg=m3Þ n

Al 70 2700 0.3
SiC 420 3100 0.15

N ¼
2
4J1cosðkqÞ 0 0 . JncosðkqÞ 0 0

0 J1sinðkqÞ 0 . 0 JnsinðkqÞ 0
0 0 J1cosðkqÞ . 0 0 JncosðkqÞ

3
5; (24)
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to render the most accurate results. Concerning the numbers of
polynomial basis functions m in Eq. (16), values in the interval 0 �
m � 6 are tested which seems to result in the best choice when
m ¼ 3. Hereby, the polynomial basis functions Eq. (19) becomes

PðxÞ ¼ ½1 r z �T : (33)

For the number of nodes nwithin the local support domain used
in Eq. (9), this is estimated by using a fix support domain radius
rs¼ 2dc, where dc is the average distance between nodal points. The
remaining two parameters q and ac in Eq. (18) are chosen as
q ¼ 1.03 and ac ¼ 2 after trying several different combinations of
similar values, compare Liu et al. (2003, 2005).

As for the number and distribution of nodes in the two-dimen-
sional domain, the number of terms for a certain accuracy depends
on the circumferential wave number k and the mode number.
Concentrating on the fundamental modes for each k as depicted in
the Figs.1e8 below, convergence results for homogeneous CC and FF
shells are presented in Tables 2 and 3 when k ¼ 0,1,2. Here the
nondimensional eigenfrequency U ¼ uro

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rm=mm

p
. Both tables

show that these eigenfrequencies seem to converge to the exact
values, which for CC is taken from Buchanan and Yii (2002) and for
FF is from So and Leissa (1997). The tables show the converging

tendencies using relative few nodes; using slightly more terms
(notably in the r directions) also render the correct values for CC
whenm¼ 2 and for FFwhenm¼ 1 andm¼ 2. It is interesting to note
that accurate results are obtained using rather few nodes, which

Fig. 2. First frequency U for each k associated with various boundary conditions;
nr ¼ 0, nz ¼ 2.

Fig. 3. First frequency U for each k associated with various boundary conditions;
nr ¼ 2, nz ¼ 0.

Fig. 4. First frequency U for each k associated with various boundary conditions;
nr ¼ 2, nz ¼ 2.

Fig. 1. First frequency U for each k associated with various boundary conditions; nr ¼ 0,
nz ¼ 0.

Table 2
Convergence table for a homogeneous CC shell.

m nr � nz U m nr � nz U m nr � nz U

0 3 � 12 1.574 1 3 � 12 1.325 2 3 � 12 1.602
3 � 15 1.573 3 � 15 1.323 3 � 15 1.600
3 � 18 1.571 3 � 18 1.321 3 � 18 1.598
6 � 12 1.570 6 � 12 1.310 9 � 12 1.597
6 � 15 1.571 6 � 15 1.308 9 � 15 1.589
6 � 18 1.571 6 � 18 1.308 9 � 18 1.591
Exact 1.571 Exact 1.308 Exact 1.594

Table 3
Convergence table for a homogeneous FF shell.

m nr � nz U m nr � nz U m nr � nz U

0 3 � 12 1.574 1 3 � 12 1.537 2 3 � 12 0.919
3 � 15 1.573 3 � 15 1.540 3 � 15 0.923
3 � 18 1.571 6 � 12 1.577 6 � 12 0.945
6 � 12 1.566 6 � 15 1.580 6 � 15 0.952
6 � 15 1.570 9 � 12 1.596 9 � 12 0.964
6 � 18 1.571 9 � 15 1.600 9 � 15 0.965
Exact 1.571 Exact 1.604 Exact 0.970
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indicates the efficiency of themeshlessmethod. The results given in
Tables 2 and3areobtainedusingup toabout 150nodes,whereas the
results for the inhomogeneous shells presented in the plots below
use up to about 300 nodes.

4.1. Frequency analysis for FG shells

The influence on the eigenfrequency using bidirectional FG
shells is studied in this section. First study the lowest eigenfre-
quency for each circumferential wave number k associatedwith the
four boundary conditions. Figs. 1e4 show these eigenfrequencies
for different FG constituents, that is different power law exponents
as presented in Eq. (26). Fig. 1 considers the pure metal case. All the
four boundary conditions have a common eigenfrequency U ¼ 1.57
for the pure torsional mode at k ¼ 0. The lowest eigenfrequency is
for FF at k¼ 2 whereU¼ 0.97. These results for CC, FF and SS1 are in
line with the homogenous case presented by Buchanan and Yii
(2002). Corresponding curves are presented for thin shells using
approximate shell theories (Pradhan et al., 2000; Ansari and
Darvizeh, 2008). Note that the present work has the lowest
eigenfrequency for FF among the boundary conditions for the
presented cases k � 2, which is not the case for Pradhan et al.
(2000). Next consider Figs. 2 and 3 for one-directional FGM in z
and r directions, respectively. Clearly the eigenfrequencies increase
as the ceramic phase influence increases. Generally, the influence
due to a variation in nr is more prominent than for varying nz, as
expected. However, this is not entirely the case for FF shells, as the
lowest eigenfrequency when k ¼ 2 is more or less the same in both
Figs. 2 and 3, see more below. Finally Fig. 4 presents the results for

a bidirectional FGM, where the eigenfrequencies in all cases are
higher than in the previous plots. Note from Eq. (26) that the
ceramic phase here clearly dominates over the metal phase. As an
example, the k ¼ 0 case gives U ¼ 3.65 while the pure ceramic case
gives U ¼ 3.82 for all four boundary conditions. A common
tendency in all the Figs. 1e4 is that the two SS curves lie in between
the lower FF curve and the higher CC curve, except for k � 1.

It is interesting to further examine the behavior for FF shells
concerning the one-directional variation in r and z. To this end,
consider Fig. 5 which shows the lowest eigenfrequency when k ¼ 1
for different nr and nzwhen nz ¼ 0 and nr¼ 0, respectively. Here it is
clear from the crossing of curves that there is a transition point at
around ni ¼ 8.5 from where the power law exponent nz influences
the frequency level more prominently than nr. Such transition
points are also present for k ¼ 0 and k ¼ 2, not illustrated here. As
a comparison to Fig. 5, the corresponding CC case is displayed in
Fig. 6 showing no crossing of curves.

To see the influence of the variation of the power law exponents,
it is possible to display various plots for the four boundary condi-
tions. As there are similar tendencies for all boundary conditions,
only the CC case is presented here. Fig. 7 shows the lowest eigen-
frequency for each circumferential wave number kwhen nz ¼ 0 and
varying nr. This plot clearly shows the increase in frequency as nr
increases. For each nr the k ¼ 1 mode has the lowest eigenfre-
quency; just as for homogeneous material (Buchanan and Yii,
2002). Other power law exponents could have be chosen, but the
overall behavior is similar to the present case. Similar plots are
presented using either approximate shell theories (Pradhan et al.,
2000; Kadoli and Ganesan, 2006; Ansari and Darvizeh, 2008) or

Fig. 5. First FF frequency U for k ¼ 1 using various ni where i ¼ r,z.

Fig. 6. First CC frequency U for k ¼ 1 using various ni where i ¼ r,z.

Fig. 7. First CC frequency U when nz ¼ 0 for each k using various nr.

Fig. 8. First CC frequency U when k ¼ 0 using various nr and nz.
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three-dimensional theory (Asgari and Akhlaghi, 2011). Note that
the latter work studying FF thick shells using FEM does not display
a local minimum at k ¼ 2 (compare the present Figs. 1e4) which
seems somewhat inconsistent considering the results in table form
for homogeneous shells presented therein as well as by So and
Leissa (1997); Buchanan and Yii (2002). As a final illustration,
Fig. 8 presents the lowest eigenfrequency for k ¼ 0 in the case of
bidirectional FGM. This plot clearly shows the increase in frequency
as the power law exponents increase. A similar case for FF shells is
given by Asgari and Akhlaghi (2011).

4.2. Mode shapes for FG shells

It is of interest to see how the mode shapes are influenced
by the bidirectional FG variation. Consider only the modes for
k ¼ 0 as is reported in Buchanan and Yii (2002) for a homogeneous
shell. Here the FF and SS1 boundary conditions are studied for
four cases: nr ¼ 0;nz ¼ 0; nr ¼ 2;nz ¼ 0; nr ¼ 0;nz ¼ 2, and
nr ¼ 2;nz ¼ 2. Figs. 9e11 illustrate the eigenmodes related to the
mode shapes Uh,2 � Uh,4 for a homogeneous shell. Here, the modes
related to the torsional mode Uh,1 for a homogeneous shell are not
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Fig. 9. Mode shapes for k ¼ 0 related to Uh,2; ri ¼ 1, ro ¼ 2 and L ¼ 4.
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Fig. 10. Mode shapes for k ¼ 0 related to Uh,3; ri ¼ 1, ro ¼ 2 and L ¼ 4.
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illustrated due to the deformation nature. Note that the corre-
sponding FG shell modes for SS1 are ordered in the same fashion
as the homogeneous shell. However for a FF shell the modes for
nr ¼ 0;nz ¼ 2 and nr ¼ 2, nz ¼ 2 are seen to be ordered differ-
ently. Here the third modes are of Uh,2 type in these cases, and
illustrated in Fig. 9(a). For nr ¼ 0, nz ¼ 2 the torsional mode has the
second lowest eigenfrequency, so the corresponding mode illus-
trated in 10 is for the lowest eigenfrequency. For nr ¼ 2, nz ¼ 2 the
second mode is presented in 10. In each mode, the displacements
are normalized so that the point originally at (r ¼ ri, z ¼ 0) has the
same radial displacement for the four different FG cases.

It is clear from these plots that the FG variation has pronounced
influence on the mode shapes. Generally the modes using nr ¼ 0,
nz¼ 0 and nr¼ 2, nz¼ 0 are of the same type as expected, where the
mode shapes posses the symmetric/antisymmetric behavior in line
with Buchanan and Yii (2002). It is also clear that the curves where
there is a variation in the z direction are similar; nr ¼ 0, nz ¼ 2, and
nr ¼ 2, nz ¼ 2.

5. Conclusions

The paper illustrates the RPIM adopted on a thick shell using
three-dimensional equations of motion. The shell is bidirectional
FG where the variation is present in both the radial and the axial
directions. Numerical results on eigenfrequencies are presented
using four different boundary conditions, and results for eigen-
modes are illustrated for two different boundary conditions. The
effects fromvariation in radial and/or axial directions are illustrated
in these figures.

This work shows that the RPIM is an efficient alternative to FEM
when solving dynamical shell problems. The virtue of this method
is the absence of a mesh, the ease of handling both the boundary
conditions and the coding procedure as a whole, resulting in a fast
algorithm. The tuning of the parameters present in RPIM is ob-
tained by comparing the results for a homogeneous shell to results
given in the literature.

Possible applications of the present work concern how to
distribute the material constituents in two directions that more
efficiently fulfill engineering purposes. Hereby it is possible to

design structures that resist high-temperature environment in
a structured manner. Future work includes optimization problems
on choosing thematerial configuration for a specific purpose, e.g. to
control eigenfrequencies.
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