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Geochemical data are expressed in closed numerical systems due to their non-normality and the 
presence of outliers. The specificity of such data makes it challenging to analyze them using standard 
statistical techniques. The U-modeling of log-transformed data represents a novel approach to 
geochemical anomaly separation. This method models the geochemical open or log-transformed 
data by the U-spatial statistics algorithm and has been used for the first time in this paper. In this 
research, Additive and Centered Logarithmic Transformations (ALR and CLR) were applied to data 
from the Doostbiglou region in Ardabil province, Iran, known for its copper-gold and molybdenum 
mineralization. After transforming the data into an open numerical system, the correlation between 
elements was calculated for both systems to compare the results. The output data were modeled 
using the U-spatial statistics method, and anomaly maps were subsequently generated. Validation 
and comparison of the results, considering field data obtained from the local and regional exploration, 
revealed that both models produced similar results in separating anomalous areas and showed a 
high degree of agreement with field data. However, the U-modeling of the ALR data more closely 
aligns with field observations and provides a more precise representation of the mineralization trend. 
Therefore, these new models are recommended for evaluating the spatial distribution of elements and 
determining the threshold value.
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Chemical analysis of geochemical samples taken from different environments leads to the production of 
geochemical data, and the study of these data to identify geochemical anomalies is one of the essential issues in 
mineral resource exploration1–4. In general, the quality and accuracy of the processing results performed by data 
mining methods depend on the quality of the data. Raw data is usually contains missing, noisy, inconsistent, 
incomplete, and outlier data. It is essential to perform preprocessing operations on the data because it is a 
crucial step that leads to improving the quality of raw data and increasing the efficiency of the results of the data 
processing stage. The data preprocessing step is the data preparation step to extract the most information in the 
final processing step5. Based on previous studies, it has been proven that statistical processing on log-transformed 
geochemical data produces more valuable results. Simply put, when a logarithmic transformation algorithm is 
applied to the data and then statistical processing is performed on them, better results and information about the 
distribution of geochemical elements in the study area are obtained3,6–8.

The three most significant log-ratio transformations available for altering composition data are the Additive 
Log-Ratio Transformation (ALR), Centered Log-Ratio Transformation (CLR), and Isometric Log-Ratio 
Transformation (ILR). Because the logarithmic equations’ coefficients are random variables that fluctuate 
between -∞ and +∞, multivariate statistical analysis can be carried out with ease9–12. The process of ALR 
involves selecting one variable from the set of accessible variables, dividing the remaining variables by it, and 

1Department of Mining Engineering, Faculty of Engineering, University of Mohaghegh Ardabili, Ardabil, Iran. 
2Department of Mining Engineering, University of Gonabad, Gonabad, Iran. email: M.seyedrahimi@uma.ac.ir

OPEN

Scientific Reports |        (2025) 15:21254 1| https://doi.org/10.1038/s41598-025-05955-5

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-05955-5&domain=pdf&date_stamp=2025-6-10


then determining their logarithm. Consequently, the variable will be eliminated from the dataset, but the system 
will still be open. Without reference to particular theories, this approach depends on the selection of the dividing 
variable, which is based on the experience and viewpoint of the individual13–16. It is important to choose this 
variable carefully because there will be a spurious association if it is the rock-forming variable. Each variable’s 
first logarithm is specified by the CLR technique, and this is then split into the variables’ geometric mean; all 
variables must have the same unit. Although this procedure does not eliminate any variables from the dataset, 
it has a weakness in multivariate statistical analysis since the covariance matrix of the variables is irreversible. 
Therefore, this approach can be chosen over the earlier one17–20. Due to its geometrical qualities, the inverse 
covariance matrix in the ILR can be determined and is preferred; however, this method is more complex than the 
other two methods, and there are various rules. D-1 variables from the primary D-dimensional space represent 
the method’s output. This transformation reduces the dimensionality of the data, which makes the output 
hard to understand and prevents it from being used in the univariate analysis15,21–24. Although logarithmic 
modifications frequently lessen skewness and bring the data closer to a normal distribution, they do not affect the 
data’s composition13. Some geochemical study techniques, such as the U-statistics method, employ the distance 
between samples as a weight to separate anomalous from the background25. With this procedure, the defined 
radius is used to calculate a range of different U-values. The concept of the maximum │U│value is essential for 
optimizing anomaly separation and choosing the optimal U-value26–31. Based on the U-histogram, the number 
of mineralization phases and geological changes that caused a particular concentration fluctuation is identified.

In this Article, by modeling the output data transformed to ALR and CLR methods with the structural 
method of U- spatial statistics, a new integrated method was introduced to find exploration targets in the gold-
molybdenum and copper mineralization type. For this purpose, after placing the data in an open numerical 
system, the correlation between elements was also studied for these two systems in order to compare the results. 
The main objective of this research is to use the advantages of ALR and CLR algorithms to open exploration data 
and model them in a spatial statistics environment to optimally separate anomalous areas from the geochemical 
background and improve the results.

Geological setting
The study region is located within Azerbaijan’s structural zone. The majority of its components are volcanic rocks 
from the Eocene. In the east of Ardabil Province, the Doostbiglou region is located approximately northwest 
of city of Meshginshahr. This region is situated in the Azerbaijan-Lesser Caucasus metallogenic belt32 and 
the western Alborz-Azerbaijan structural zone (Fig. 1), as per the zoning paradigm in Iranian geology33. Pre-
Cretaceous rock formations are often not extruded in the region, and the only sedimentary rocks found here are 
Quaternary travertine, formed in the mouths of hot springs which are widely distributed.

Magmatic activity in this region started at the end of the Cretaceous with the eruption of compounds in the 
andesite to trachy-andesite range, and continued with the granitoide intrusive intrusion. Following this period, 
with a brief break, subsequent eruptions resulted in the formation of the Sabalan volcanic system35. Potassic 
rocks were found in the distant distances near the city of Kaleybar as intrusive masses of Nephelin Siyenite and 
more (near the Urumieh Lake) on Saray Island extruded36. The main reason for the presence of Cretaceous 
volcanics in this region is the tension status occurrence, which has dominated the area since the Laramide 
orogeny in the late Cretaceous37.

Geological research in the region has revealed some intricate connections among the outcrops. Generally 
speaking, it is incredibly uncommon to observe the sharp contacts between the various lithology categories due 
to intense alteration processes, erosion, many collapses, massive landslides, and rock flows. However, several 
lithology units are recognized for the area examined by recent field geology operations (Fig. 2). According to 
field geology investigations, the majority of the region is composed of volcanic and volcanoclastic rocks from 
the Eocene (56–33 MA) that have been carved out by Oligomiocene subvolcanic and plutonic rocks (33–5.5 
MA). The Eocene Rock strata were covered by alkali-feldsparoid-rich silica under saturated volcanics (tephritite, 
basanite, and latite) that contained zeolite and leucite, and lastly, ferricrette-red conglomerates from the Neogene 
epoch. Lastly, the original rock units were covered by nonconsolidated fan, glacial, and alluvial deposits of recent 
age (Quaternary).

There is some copper oxide and sulfide mineralization in this area. Additionally, the Doostbiglou area’s 
phyllic and argillic zones exhibit intense pyrite mineralization through veinlets and scattered deposits. However, 
gypsum has replaced many of the oxidised stockwork veinlets. The primary factors of mineralization in this 
region are based on the mineralogy of phyllic and potassic zones. These alteration zones contain low-grade 
chalcopyrite (Cu sulphide) mineralization with a grade of roughly five ppm Au. Figure  3 depicts a volcanic 
breccia rock unit (Evb) underlying the Neogene age ferricrette-conglomerates (Ngc) in southwestern part of the 
area.

Materials and methods
Sampling and data
In the study erea, 345 samples of silt stream sediments were collected from the area by Sarzamin-e-Jolgeha-
e-Asemani Mining Company and sent to the laboratory for analysis using the ICP-Fire Assay method. After 
collecting the data, first the data was subjected to preliminary statistical analysis. Also, the Q-Q diagram of 
individual elements was used to check the out-of-order data. Among the elements, only As element had two 
outliers, which were used after correction. No outliers were found in the data for other elements, especially Au. 
In this study, the combination of Log-ratio Transformations with U-spatial statistics Method has been applied 
for detecting geochemical anomalies in regional scale in Doostbiglou area. In the first step, the transformations 
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of ALR and CLR were performed to transform of Au, Cu and, Mo concentrations and so, the transormed values 
were modeled by U-spatial statistics Method.

Additive Log-Ratio transformation (ALR)
The additive log-ratio (ALR) transformation is a widely used for transforming data into a log-ratio space22,38. 
This transformation involves choosing one variable from the set of variables, dividing the other variables by it, 
and then taking the logarithm. This way, the system is moved out of the closed state, but the selected variable is 
removed from the dataset. Therefore, care must be taken when selecting this variable, as if the selected variable 
is a major constituent of the rock, a spurious correlation will still be created. In geochemistry, trace or indicator 
elements such as Ti and Zr are used to select variables, as removing these elements from the dataset does not 
cause problems in mineral exploration analysis. Using this method, the direct relationship between the original 
data and their units of measurement is eliminated under this transformation13,39. In this method, for values X= 
(x1, x2, …, xD), The following relationship holds:
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Centered Log-Ratio transformation (CLR)
In the CLR technique, each variable’s first logarithm is given, and the logarithm is then divided by the variables’ 
geometric mean (Eq. 2). In this case, every variable needs to have the same unit. One of the drawbacks of this 
approach is that the covariance matrix of the variables is irreversible (determinant = zero), even if no variables 
will be eliminated from the dataset in contrast to the prior way. For this reason, the data cannot be subjected to 
numerous multivariate statistical analyses13. Unlike the ALR method, one of the advantages of this method is 
that none of the variables are removed3.

Fig. 1.  The location of the Doostbiglou area on the structural geology model of Iran (Tectonic units’ map of 
Iran taken from34).
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Fig. 3.  Field view of volcanic breccia rock unit (Evb) under the Neogene age ferricrette-conglomerates (Ngc) in 
southwestern part of the area (view to North)32.

 

Fig. 2.  A view from the study area lithology units32.
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U-statistics modeling of Log-ratio transformed data
The spatial U-spatial statistics method is a structural method that separates anomalous samples from the 
geochemical background. The basis of this method is to calculate the weighted average of the samples within a 
moving window. In this method, the distance between samples is considered as the weight of the samples27. A 
range of distinct U-values are obtained from these windows, which are the designated radiuses. The key idea 
for choosing the optimal U-value and maximizing anomaly separation is the maximum │U│value (U*)40,41. 
Specific geological property variety is determined by the U* histogram. First, circles with radiuses ranging from 
0 to 5000 m (rmax) were constructed, with radius changes of 10 m, to apply the U-spatial statistics approach and 
get the U-value for every sample location. According to42, the U-statistics value for each point I is determined 
as follows:

	
Ui (r) = xi (r) − µ

σ
.� (3)

For each sample point, the different Ui(r) is calculated by varying the r-value, where µ and σ represent the mean 
and standard deviation of the whole data, respectively. Accordingly, Ui(r) depends on r where every sample 
point is regarded as unknown, and many nearby samples inside the circles were used to compute associated 
U-values. Among all the surrounding samples, samples n1 and n2 are utilized to compute Ui for each search 
radius r. They belong to the background and anomaly populations, respectively. In light of this, it can be stated 
as follows29,42]and [43):

	
Ui (r) =

∑ n1
j=1wj (r) xj − µ

σ
+

∑ n2
k=1wk (r) xk − µ

σ
.� (4)

If the average of the samples of the moving window of radius r is µ, and the averages of the background and 
anomalous populations are µA and µB, respectively, then the µB˂µ˂µA will be supported. Each sample’s new 
features are computed using the ARL and CRL algorithms on the transformed data. In order to interpret each 
sample, absolute transformed values are computed in place of initial values (element concentration). This study 
examined the absolute transformed values of the concentrations of Au, Mo, and Cu. They are mappable and can 
thus be used as a geochemical anomaly mapping index. This was accomplished by applying U-value modeling to 
the transformed values relevant to the ARL and CRL.

Results
Correlation coefficient and cluster analysis in open and closed numerical systems
To analyze the correlation coefficient in open and closed systems, Spearman’s correlation was used for data in 
the closed system due to non-normality. In contrast, while Pearson’s correlation was applied to the results of 
additive log-ratio (ALR) and centered log-ratio (CLR) transformations. The corresponding results are presented 
in Tables 1 and 2, and 3. In the closed system, the correlation coefficient between Cu and Mo is 0.165, between 
Cu and Au is 0.45, and between Mo and Au is 0.43. In the open system using the ALR method, these correlations 
are 0.53, 0.68, and 0.56, respectively. Using the CLR method, they are 0.13, 0.31, and 0.31, respectively. As 

Au Mo Cu Pb Zn Ag Mn Fe As Sb Bi Ca Ba Na W Sn

Au 1.000

Mo 0.431** 1.000

Cu 0.450** 0.165** 1.000

Pb 0.459** 0.539** 0.207** 1.000

Zn 0.190** -0.007 0.220** 0.198** 1.000

Ag -0.018 -0.025 0.157** − 0.311** − 0.258** 1.000

Mn 0.194** -0.045 0.525** 0.072 0.295** 0.179** 1.000

Fe 0.406** 0.475** 0.363** 0.392** 0.102 -0.102 0.127* 1.000

As 0.224** 0.293** 0.276** -0.061 − 0.265** 0.425** -0.031 0.312** 1.000

Sb 0.049 0.112* 0.201** 0.100 − 0.377** 0.342** 0.224** 0.159** 0.325** 1.000

Bi 0.000 -0.007 -0.056 -0.030 0.115* -0.080 − 0.316** 0.109* 0.082 − 0.186** 1.000

Ca − 0.162** − 0.426** 0.056 − 0.315** 0.004 0.098 0.524** − 0.287** − 0.263** 0.157** − 0.183** 1.000

Ba 0.211** 0.286** 0.020 0.077 0.123* -0.061 − 0.324** 0.217** 0.357** − 0.233** 0.210** − 0.525** 1.000

Na 0.046 − 0.123* 0.191** − 0.214** − 0.114* 0.277** 0.451** -0.003 0.169** 0.291** − 0.143** 0.463** − 0.319** 1.000

W 0.069 0.401** 0.092 0.248** 0.075 0.048 -0.022 0.223** 0.050 0.205** 0.002 − 0.215** 0.040 0.041 1.000

Sn -0.048 − 0.166** − 0.250** 0.130* 0.422** − 0.535** − 0.294** − 0.189** − 0.437** − 0.467** 0.302** − 0.166** 0.210** − 0.428** -0.066 1.000

Table 1.  Spearman correlation coefficient of elements in samples (closed system).
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observed, the correlation coefficient of the index elements increased after the additive log-ratio transformation 
in the porphyry mineralization system. However, the correlation of the index elements decreased using the CLR 
method. To investigate the changes caused by ALR and CLR transformations, cluster analysis was performed 
on both the raw and transformed data. The results of the cluster analysis of the raw data (Fig. 4a) show that 
except for Mn, Ba, and As, the remaining elements are clustered with gold. In the cluster analysis of the ALR-
transformed data (Fig. 4b), the clustering is more distinct, and in the gold cluster, copper is grouped with lead 
and molybdenum. Bismuth and tungsten are also clustered with molybdenum and gold in the dendrogram of 
the transformed data. In the CLR method, in the gold cluster, copper is grouped with the metallic elements 
arsenic, antimony, silver, and manganese. Zinc, tin, lead, iron, bismuth, and tungsten are also observed with 
molybdenum in the dendrogram of the transformed data (Fig. 4c).

The CLR transformation is used in compositional data analysis due to its ability to map data into an 
unconstrained Euclidean space. However, it introduces certain limitations, particularly the irreversible nature 
of its covariance matrix, which can lead to geometric distortions in correlation and clustering analyses. The 
singularity of the CLR covariance matrix arises because the transformed components are not independent, as 
they sum to zero. This property can impact statistical interpretations when using conventional multivariate 
methods that assume full-rank covariance structures. Despite these limitations, CLR remains a valuable tool in 
compositional data analysis, particularly when the focus is on relative relationships between components rather 
than absolute values. In this study, CLR transformation was applied for clustering and correlation analyses, 
in comparison to ALR transform and closed data. The results indicated, the the relationships between the 

Au Mo Cu Pb Zn Ag Mn Fe As Sb Bi Ca Ba Na W Sn

Au 1

Mo 0.310** 1

Cu 0.313** 0.128* 1

Pb 0.363** 0.502** 0.189** 1

Zn 0.356** 0.034 0.184** 0.169** 1

Ag − 0.193** − 0.233** − 0.260** − 0.503** − 0.458** 1

Mn − 0.037 − 0.189** 0.222** − 0.063 0.051 0.004 1

Fe 0.200** 0.416** 0.194** 0.467** 0.229** − 0.568** − 0.351** 1

As 0.051 0.183** − 0.093 − 0.120* − 0.134* 0.227** − 0.276** − 0.053 1

Sb − 0.330** − 0.217** − 0.235** − 0.113* − 0.640** 0.358** 0.136* − 0.452** 0.078 1

Bi − 0.022 − 0.036 − 0.142** − 0.137* 0.094 − 0.083 − 0.440** − 0.012 − 0.004 − 0.229** 1

Ca − 0.273** − 0.451** − 0.086 − 0.335** − 0.079 − 0.015 0.553** − 0.346** − 0.416** 0.081 − 0.149** 1

Ba 0.312** 0.295** 0.143** 0.198** 0.328** − 0.252** − 0.443** 0.551** 0.277** − 0.553** 0.078 − 0.465** 1

Na − 0.168** − 0.170** − 0.081 − 0.136* − 0.125* − 0.093 0.151** 0.099 − 0.229** − 0.095 − 0.140** 0.323** − 0.025 1

W 0.067 0.374** 0.051 0.340** 0.196** − 0.378** − 0.403** 0.541** − 0.069 − 0.351** − 0.010 − 0.350** 0.433** 0.074 1

Sn 0.186** − 0.012 0.041 0.231** 0.482** − 0.553** − 0.177** 0.358** − 0.200** − 0.533** 0.167** − 0.013 0.390** 0.033 0.339** 1

Table 3.  Pearson correlation coefficient of elements based on the results of CLR transformation.

 

Au Mo Cu Pb Zn Ag Mn Fe As Sb Bi Ca Ba Na W Sn

Au 1

Mo 0.555** 1

Cu 0.679** 0.529** 1

Pb 0.613** 0.685** 0.646** 1

Zn 0.507** 0.291** 0.509** 0.411** 1

Ag -0.085 − 0.193** − 0.153** − 0.356** − 0.351** 1

Mn 0.342** 0.190** 0.578** 0.347** 0.322** -0.002 1

Fe 0.567** 0.586** 0.687** 0.646** 0.469** − 0.177** 0.328** 1

As -0.048 0.087 − 0.111* -0.050 − 0.143** 0.098 − 0.158** -0.043 1

Sb 0.139** 0.157** 0.196** 0.236** -0.055 0.191** 0.185** 0.485** 0.249** 1

Bi 0.445** 0.471** 0.493** 0.422** 0.453** − 0.187** 0.050 0.782** -0.049 0.261** 1

Ca 0.144** 0.038 0.328** 0.165** 0.212** 0.019 0.477** 0.438** -0.097 0.268** 0.320** 1

Ba 0.575** 0.556** 0.633** 0.584** 0.501** − 0.177** 0.197** 0.884** -0.040 0.344** 0.740** 0.395** 1

Na 0.427** 0.392** 0.589** 0.482** 0.363** -0.090 0.450** 0.680** -0.095 0.215** 0.582** 0.623** 0.685** 1

W 0.513** 0.556** 0.596** 0.573** 0.441** − 0.195** 0.201** 0.801** -0.037 0.333** 0.666** 0.387** 0.796** 0.612** 1

Sn 0.308** 0.101 0.430** 0.384** 0.439** − 0.261** 0.195** 0.479** -0.061 0.233** 0.325** 0.352** 0.548** 0.484** 0.473** 1

Table 2.  Pearson correlation coefficient of elements based on the results of ALR transformation.
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paragenesis elements are better distinguished in the CLR-transformed data compared to the untransformed 
data.

U-modeling of ALR and CLR data
The ALR and CLR values have been considered for the final data for U-modeling, and geochemical anomalies 
mapping has been performed on the U-values. This was accomplished by first calculating and interpolating the 
U-values of the ALR and CLR values using the U-statistics algorithm, coded in the MATLAB software. In this 
program, a moving window or search radius of 0 to 5000 m (rmax) was considered. Considering the number 
of samples in the neighborhood of each point within each window, the U value of that point was calculated, 
and its maximum value was assigned to the point as the U-value of ALR and CLR. The approach is not highly 
sensitive to this parameter, as seen by the results being comparatively the same when the radii of 1, 3, and 
5 km were examined. To guarantee the involvement of every sample in the U-value calculation, the distance 
between the radii of the two circles was taken into account in two successive steps of 10 m. The computation 
for every sampling point begins with a circle of radius zero and extends to a radius of 5000 m. Each sampling 
point had 500 circles taken into consideration, and the U value was computed for each of them based on the 
distance of 10  m between two successive radii. The point’s maximum U-values in absolute terms were then 
calculated and recorded as the U-value of ALR and CLR. Histograms of the absolute CLR and ALR values and 
U-values for the ​​Au, Cu, and Mo elements are shown in Figs. 5 and 6. The histograms of absolute ALR and CLR 
values in these figures represent the normalized values of the raw data. A standard distribution curve has been 
fitted to the histograms. This plot, along with the standard deviation values of the log-ratio transformed data, 
indicates that the data transformed using the ALR method exhibits a higher degree of dispersion than the CLR 
method. To further investigate, a Bi-plot was constructed for both raw and log-transformed data using ALR 
and CLR methods (Fig. 7). This plot indicates that the correlation between gold and copper with molybdenum 
is negative and inverse for the raw data, making it difficult to identify the underlying realities present in the 

Fig. 4.  Dendrogram resulting from cluster analysis on raw data (a), ALR transformed data (b), and CLR 
transformed data (c).
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data. In the CLR model, the angles between the lines of copper, gold, and molybdenum have shown significant 
improvement compared to the raw data, allowing for a more accurate identification of the geochemical behavior 
of these three elements as paragenetic elements. In the ALR Bi-plot, the results improved significantly, revealing 
that these three elements exhibited very similar behavior. Notably, the angle between the lines for copper and 
gold approached zero, indicating that this type of transformation can be effectively utilized for data analysis. 
The Mardia method was employed to assess multivariate normality, and the p-values obtained from this test 
were quite low, suggesting a lack of multivariate normality. This is primarily due to some geochemical samples 
being located within mineralization zones, which are influenced by higher-concentration mineralization. One 

Fig. 5.  Histograms of the absolute CLR values (left) and U-values of CLR (right) of the elements.
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advantage of the U-spatial statistics method is that it does not require multivariate normality in geochemical 
data analysis. In this algorithm, large differences in geochemical concentrations are disaggregated.

The zero point, which is the boundary that touches the anomalous data and extends past the background 
boundary, is also where the frequency distribution of the U-value of the ALR and CLR data displays a minimum. 
In other words, it is the approximate boundary of the anomalous population of the geochemical background. 
A maximum is seen in the frequency distribution of the U-value of the ALR and CLR data before and after this 
limit, indicating that the data is in two modes. Given that there is a mode in the frequency distribution of the 

Fig. 6.  Histograms of the Absolute ALR values (left) and U-values of ALR (right) of the elements.
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absolute ALR and CLR data, it is clear that the data set using this method has a high level of resolution. Two 
or more pollution populations are indicated by this distribution; the background population is the first, and 
the components associated with the anomalies are the subsequent populations. Two populations were found 
in Figs. 5 and 6 based on the distribution of ALR and CLR data. These two populations were separated using 
−
U +nSD values. The multivariate U-value of the ALR and CLR data was then shown on a geochemical map 

which, 
−
U  and SD are the average value and standard deviation of the estimated or modeled values, respectively. 

Fig. 7.  Bi-plot of raw and log-transformed data by the ALR and CLR methods within XY coordinate system.
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The separation limit between geochemical anomalies from the background or geochemical threshold values was 
also determined by n = 1, 2, and 3. This boundary was determined with n = 1, and the final map was produced.

Discussion
To investigate the spatial variations of the modeled data of ALR and CRL transformations by U-statistics, spatial 
distribution maps of geochemical elements, including delineated anomaly zones, were created. A classical 
statistical method was employed to separate anomalies from the background. Consequently, the threshold value 
was calculated using the 

−
U +nSD criterion and anomalous zones were identified on geochemical maps based 

on this value. Threshold values for Au, Cu, and Mo with modeled values for n = 1 and 2 are presented in Table 4. 
The 

−
U +SD criterion was utilized to determine anomalous zones. The reason why criterion 

−
U +SD was 

chosen to obtain anomalous areas is that the results obtained from criterion 
−
U +2SD introduced a very small 

anomaly that was not consistent with the field realities. The area of ​​the anomaly in this criterion was either zero 
or very small, which could not justify the secondary geological processes in this type of deposit. The reason may 
be due to the low mobility of gold, copper and molybdenum elements in this type of mineralization. Figure 8 
illustrates the spatial distribution maps of Au, Cu, and Mo with U-values of ALR and CLR, along with the 
delineated anomaly zones based on the threshold values. In this distribution, the Au anomaly is observed in the 
region’s center, which is inclined to the west with an approximate northeast-southwest trend. This mineralization 
trend is more evident in the U-modeling of ALR. For Cu, the mineralization trend is also northeast-southwest, 
confirming the close association of this element with Au in porphyry gold-copper-molybdenum systems. 
The variation trend of molybdenum in the U-modeling of ALR is in good agreement with gold and copper. 
However, in the U-modeling of CLR, the anomalous zones of this element extend to the south of the region and 
exhibit a more significant extent. The results of decomposing geochemical data of elements using ALR and CLR 
transformations and modeling these data with the U-statistic indicate the presence of copper-gold-molybdenum 
mineralization in the region. To further validate the methods and select the optimal method, the results of local 
and regional exploration conducted by Sarzamin-e-Jolgeha-e-Asemani Mining Company were utilized. These 
results identified two gold mineralized zones for subsurface drilling. The conducted drilling confirmed gold 
mineralization at depth in these zones. To validate the results of the models, the locations of these areas were 
considered. Following this, the anomalous limits were mapped according to the threshold values obtained from 
the U-modeling of the output data of the ALR and CLR algorithms (Table 4).

Figure 9 illustrates the map of anomalous limits produced by the ALR and CLR models. In the next step, 
the locations of the exploration drilling wells, or the mineral deposit areas, were highlighted with a pale blue 
hatching on these maps. To compare and validate the results, both the location of the mineral deposits and 
their surface extent, as well as the mineralization trends, were considered. Both models yielded similar results 
regarding identifying gold anomaly zones and showed excellent agreement with field data. The extent of halos 
detected by the U-statistics modeling of the CLR data is more extensive, which can increase the cost of continued 
exploration. The U-statistics modeling of ALR data is closer to field realities and more clearly indicates the 
mineralization trend. Therefore, these new models are proposed to evaluate the spatial distribution of elements 
and determine the threshold values (Fig. 8; Table 2).

Amirihanza et al. (2018) demonstrated that mineralization may be located along specific fault trends in 
mineralized areas, and spatial pattern analysis of structures using various methods can be effective in determining 
mineralized zones44. Accordingly, in the Doostbiglou area, there are two types of faults with NW-SE and NE-
SW trends. The NW-SE trending faults are associated with mineralization, while the NE-SW trending faults 
formed after the mineralization occurred. The NW-SE faults are also consistent with stockwork mineralization 
in the fractures. Derakhshani and Abdolzadeh (2009) demonstrated that porphyry cooper systems may exhibit 
specific patterns of geochemical zonation characterized by the enrichment of certain elements associated with 
hydrothermal alteration zones such as potassic, phyllic, and argillic45. The geochemical distribution of elements 
in the Doostbighlou area is also related to various alteration zones, supporting the hypothesis of a porphyry-style 
hydrothermal system with structurally controlled fluid pathways.

Geological field investigations in the study area indicate the presence of alterations associated with this type 
of mineralization. Figure 10a shows the phyllic alteration zone and its location. From the point of metallogeny in 
porphyry mineralization system, phyllic zone is one of the main alteration events that it observable in surficial 
and underground parts of the area with rich pyrite and sericite contents. The main host rock for this zone is the 
subvolcanic quartz diorite stock. It is characterized by intensive pyrite and rare chalcopyrite existence. The main 

Model
Results U-modeling of ALR (Au) U-modeling of ALR (Cu) U-modeling of ALR (Mo) U-modeling of CLR (Au) U-modeling of CLR (Cu) U-modeling of CLR (Mo)
−
U -0.23797 -0.06907 -0.18602 -0.30594 -0.1592 0.04139

S 1.625733 1.580782 1.680671 1.67507 1.699413 1.650509
−
U +S 1.387763 1.511715 1.49465 1.369127 1.54021 1.691899

−
U +2S 3.013496 3.092497 3.175321 3.044197 3.239622 3.342409

Table 4.  Threshold values of the modeled data by the U-modeling of the log-ratio transformed data method 
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alteration zone event in the area is the argillic zone with clay minerals accumulation, yellow color and developed 
stockworks characterization. This zone covered the phyllic zone and is located under the ferrihydrite and silica 
zones (Fig. 10b). Generally, the existence of gypsum in this zone indicates former high sulfide mineralization in 
the porphyry system. The subvolcanic quartz diorite stock is the main host rock for this alteration event.

Conclusion
In this research, a new integrated method was introduced to find geochemical exploration targets in the gold-
molybdenum and copper mineralization type. This work was done by modeling the output data transformed to 
ALR and CLR methods with the structural method of U- spatial statistics. Analysis of the correlation coefficient 
in open and closed numerical systems showed that the correlation coefficient of the index elements increased 
after the additive log-ratio transformation in this mineralization system. However, the correlation of the index 
elements decreased using the CLR method.

In the cluster analysis of the ALR and CLR transformed data, the clustering is more distinct, and in the gold 
cluster, copper is grouped with lead and molybdenum. The spatial distribution maps of Au, Cu, and Mo with 
U-values of ALR and CLR showed that the results of decomposing geochemical data of elements using ALR 
and CLR transformations and modeling these data with the U-statistic support the presence of copper-gold-
molybdenum mineralization in the region. To compare and validate the results, both the location of the mineral 
deposits and their surface extent, as well as the mineralization trends, were considered. Both models yielded 
similar results regarding the identification of gold anomaly zones and showed excellent agreement with field 
data. The extent of halos detected by the U-statistics modeling of the CLR data is more extensive, which can 
increase the cost of continued exploration. The U-statistics modeling of ALR data is closer to field realities and 
more clearly indicates the mineralization trend. Therefore, these new models are proposed to evaluate the spatial 
distribution of elements and determine the threshold values.

Fig. 8.  Geochemical distribution maps of Au, Cu, and Mo with U-values of ALR and CLR, along with the 
delineated anomaly zones based on the threshold values.
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Fig. 9.  Map of anomalous limits produced by U-modeling of the ALR and CLR transformations.
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Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author upon 
reasonable request.
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