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 A B S T R A C T

In data envelopment analysis, production trade-offs are value judgements that represent simultaneous changes 
to the inputs and outputs assumed to be technologically possible for any production unit in the technology. 
The specification of production trade-offs generally leads to an enlargement of the model of technology and 
increasing its discriminating power on efficiency. In conventional convex variable and constant returns-to-scale 
models, production trade-offs are the dual forms of weight restrictions. In this paper, we extend the use of 
production trade-offs to the free disposal hull model of technology and its constant, non-increasing and non-
decreasing returns-to-scale variants, in a single unifying development. We provide an axiomatic definition of 
the new nonconvex technologies, explore the notion of consistent trade-offs in such technologies and develop 
methods for its testing. We further develop different computational approaches for nonconvex models with 
production trade-offs. We illustrate the new models by an application in the context of higher education.
1. Introduction

In data envelopment analysis (DEA), the constant and variable 
returns-to-scale (CRS and VRS) models of Charnes, Cooper, and Rhodes 
(1978) and Banker, Charnes, and Cooper (1984) can be stated in the 
two mutually dual forms, known as the multiplier and envelopment 
models. Both forms allow the incorporation of value judgements as a 
way to refine the model (by the specification of additional information 
relevant to the efficiency assessment) and improve its discriminating 
power.

1.1. Production trade-offs in convex DEA models

In the multiplier model, value judgements are stated by weight 
restrictions—see, e.g., Allen, Athanassopoulos, Dyson, and Thanassoulis 
(1997), Thanassoulis, Portela, and Despić (2008), and Ramón, Ruiz, 
and Sirvent (2016). They typically represent the managerial perception 
of the relative importance of inputs and outputs in the assessment 
of efficiency of decision making units (DMUs). Production trade-offs 
are the dual forms of weight restrictions that appear in the envel-
opment models (Podinovski, 2004d). Such trade-offs are interpretable 
as simultaneous changes to the inputs and outputs that are assumed 
technologically possible for all DMUs in the technology.

Each production trade-off specifies technologically possible simul-
taneous changes for two and more inputs or outputs. For example, 
in the application to universities discussed in Section 7, we assume 
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that the teaching of one undergraduate student at any department 
does not incur a higher cost to the university than the teaching one 
postgraduate student at the same department. This creates a simple 
trade-off stating that, for any university, it is technologically possible 
to increase the number of undergraduate (UG) students by one and 
simultaneously reduce the number of postgraduate (PG) students by 
one, without seeking extra resources and without any detriment to 
the other outputs. This trade-off does not mean that, in reality, any 
department can implement this change but rather that the reduction of 
one PG student releases sufficient costs that can be used to teach an 
extra UG student, should this be required.

Production trade-offs are related to various marginal characteristics 
of production frontiers, such as the rates of transformation, substitution 
and marginal productivity involving different measures (inputs and 
outputs). However, while such marginal rates are generally different 
at different efficient DMUs, the way production trade-offs are incorpo-
rated in the envelopment model means that they need to be acceptable 
for all DMUs in the technology. In this sense, production trade-offs 
should be safe assumptions that are intentionally less demanding than
any of the precise (and often unknown) marginal rates evaluated at 
different points of the efficient frontier. For example, in the already 
mentioned university context, we may find out that the exact rate 
of substitution equates the costs of teaching one PG student to any-
thing between 1 and 3 UG students, depending on the university or 
department. Then the trade-off stating that the reduction of one PG 
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student releases sufficient resources to teach one UG student should be 
applicable to all universities.

The incorporation of production trade-offs in the model leads to 
an expansion of the underlying production technology in which any 
DMUs is regarded producible and can be explained based on the stated 
assumptions, including the specified trade-offs. In particular, we can 
explain why the radial or efficient target of any inefficient DMU should 
be considered technologically feasible—see, e.g., Atici and Podinovski 
(2015) for an example of such explanation in an application.

1.2. Free disposal hull and its variants

Free disposal hull (FDH) was introduced by Deprins, Simar, and 
Tulkens (1984) as a model of technology which incorporates the ob-
served DMUs and is based on the single assumption of strong (free) 
disposability of all inputs and outputs. The FDH model was subse-
quently discussed by Tulkens (1993) and Tulkens and Vanden Eeckaut 
(1995). Its further developments were pursued in several directions. 
Cherchye, Kuosmanen, and Post (2000), Kerstens and Van de Woestyne 
(2021) and Kerstens, Sadeghi, Toloo, and Van de Woestyne (2022) 
explore the economic meaning of FDH and the cost function defined by 
this model. Tavakoli and Mostafaee (2019) consider a two-stage FDH, 
while Papaioannou and Podinovski (2024) introduce an FDH model 
with multiple component processes.

Following an outline of Bogetoft (1996), Kerstens and Vanden Eeck-
aut (1999) develop further variants of the FDH technology under the 
assumptions of constant, nonincreasing and nondecreasing (CRS, NIRS 
and NDRS) returns to scale. In line with the terminology used in the 
conventional convex case, the FDH technology and its variants under 
different assumptions of returns to scale are also referred to as the 
nonconvex VRS, CRS, NIRS and NDRS technologies. The last three 
of them are useful for the assessment of scale efficiency and most 
productive scale size (MPSS) of the DMUs in the FDH (nonconvex VRS) 
technology, which is conceptually similar to their evaluation in the case 
of convex VRS model (Banker, 1984). Podinovski (2004a, 2004b) shows 
that they are also useful for the characterization of global returns to 
scale whose types are indicative of the direction of resizing that a DMU 
should undertake on its way to MPSS.

The FDH model benchmarks any DMU against its actual observed 
peers, and not against hypothetical DMUs obtained as convex com-
binations of the observed DMUs which are usually explained by the 
(time) divisibility principle. The latter becomes problematic if produc-
tion requires a significant start-up investment or exhibits other types 
of indivisibilities (Scarf, 1981). An example of this in the context 
of multi-stage production was discussed by Tone and Sahoo (2003). 
Furthermore, as noted by Koopmans (1957), assuming that inactiv-
ity (i.e., producing zero output from a zero input) is possible and 
that the technology is convex makes the increasing returns-to-scale 
characterization of efficient frontiers impossible. This contradicts the 
fact that in reality larger firms often exhibit higher productivity than 
smaller ones. Resolving this difficulty can be achieved by removing the 
assumption that the technology is convex, e.g., by using the FDH model 
of technology instead of its convex VRS analogue.

Although the above arguments make the FDH model attractive in 
applications, this comes at the expense of its relatively low discrimi-
nating power, compared to the convex VRS model. We may, however, 
consider the efficiency scores obtained from the FDH model as the 
upper bounds on the ‘‘true’’ efficiency of the DMUs. If a DMU is 
inefficient in the FDH model, then its efficiency cannot be improved in 
any other model that assumes free disposability of inputs and outputs.
2 
1.3. Contribution

In this paper we consider an extension of the FDH model of tech-
nology by the specification of production trade-offs. In a single unifying 
development, we also simultaneously obtain its CRS, NIRS and NDRS 
variants. As mentioned above, these variants are useful for the analysis 
of scale characteristics and returns to scale of the FDH technology with 
trade-offs.

We make several contributions of theoretical and practical im-
portance. First, we provide a full axiomatic derivation of the new 
nonconvex technologies which firmly places them in the realm of 
production theory. Second, we obtain three different statements of 
these technologies, each of which is useful for different theoretical 
and computational purposes. For example, this allows us to investigate 
properties of the new nonconvex technologies. In particular, it turns out 
that, although the convex VRS technology is the convex hull of FDH, 
this is no longer true for the same technologies extended by production 
trade-offs.

Third, we explore the notion of consistent production trade-offs 
and methods of its testing. Podinovski and Bouzdine-Chameeva (2013, 
2015) define consistent trade-offs and dual weight restrictions as those 
that do not generate free or unlimited production in the technology. If 
trade-offs are inconsistent, this means that we made an error in their 
specification and need to reassess our value judgements. In our paper, 
we prove that, if the specified trade-offs are consistent in any one of the 
four nonconvex (VRS, CRS, NIRS or NDRS) technologies, then they are 
consistent in the other three of these four technologies. We also develop 
exact and sufficient computational tests of consistency of trade-offs.

Fourth, we develop two different computational approaches to solv-
ing (generally mixed integer nonlinear) models based on the four non-
convex (VRS, CRS, NIRS or NDRS) technologies with production trade-
offs. One of these methods requires solving a single linear program for 
each DMU under the assessment.

Finally, we provide an illustrative application in the context of 
higher education that demonstrates an increasing discriminating power 
arising from the specification of production trade-offs in nonconvex 
models.

We proceed as follows. In Section 2, we give an overview of pro-
duction trade-offs in convex DEA technologies. In Section 3, we define 
nonconvex technologies with production trade-offs and develop their 
alternative statements. In Section 4, we develop the notion of consistent 
trade-offs in nonconvex technologies and tests of consistency. In Sec-
tions 5 and 6, we consider computational approaches for the nonconvex 
models. In Section 7, we illustrate the increased discriminating power 
of the new models with trade-offs in the context of higher education. 
In Section 8, we provide concluding remarks.

Appendices  A–C include additional discussion and proofs of mathe-
matical results.

2. Convex technologies with production trade-offs

In this section, we give a unifying axiomatic definition of the four 
conventional convex DEA technologies and their extensions by produc-
tion trade-offs. The terminology and notation used in this approach are 
related to the terminology used by Briec, Kerstens, and Vanden Eeckaut 
(2004). This allows us to streamline and simplify the development of 
analogous nonconvex technologies with production trade-offs in the 
subsequent sections.

2.1. Basic notation and terminology

Consider a production technology  ⊂ R𝑚+ × R𝑠+ with 𝑚 ≥ 1 inputs 
and 𝑠 ≥ 1 outputs. It consists of DMUs (𝐱, 𝐲), where 𝐱 ∈ R𝑚+ and 𝐲 ∈
R𝑠+ are the vectors of inputs and outputs, respectively. Conceptually, 
technology   is interpreted as follows:
 =

{

𝐱, 𝐲 ∈ R𝑚 × R𝑠 ∣ 𝐱 can produce 𝐲} .
( ) + +
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Throughout this paper, we consider a finite set of observed DMUs, 
denoted (𝐱𝑗 , 𝐲𝑗

)

, 𝑗 ∈  = {1,… , 𝐽}. We denote (𝐱𝑜, 𝐲𝑜
) the DMU under 

the evaluation. We assume that 𝐱𝑗 ≠ 0 and 𝐲𝑗 ≠ 0, for all 𝑗 ∈  ∪ {𝑜}, 
i.e., each observed DMU and the DMU (𝐱𝑜, 𝐲𝑜

) have at least one strictly 
positive input and at least one strictly positive output.

The vectors denoted 𝟎 and 𝟏 have all their components equal to 
0 and 1, respectively. The dimensions of such vectors are defined by 
the context in which they are used. Inequalities stated for vectors are 
understood to be true for each of their components. For example, if �̂�
and �̃� are two vectors of inputs, then the vector inequality �̂� ≥ �̃� means 
that �̂�𝑖 ≥ �̃�𝑖, for all their components 𝑖 = 1,… , 𝑚.

2.2. Unified definitions

The CRS, NIRS and NDRS technologies are extensions of the VRS 
technology of Banker et al. (1984) defined by different assumptions 
about the scalability of DMUs. For all four technologies, we use a 
unifying notation  C

𝛥RS, where 𝛥 ∈ {NI,V,ND,C}. For example, if 𝛥 =
NI, we have the NIRS technology  C

𝛥RS =  C
NIRS.

Following the minimum extrapolation principle of Banker et al. 
(1984), technology  C

𝛥RS is defined as the intersection of all technologies 
 ⊂ R𝑚+ × R𝑠+ that satisfy the following four axioms. (We use the 
superscript C to identify a convex technology.)
Axiom IO (Inclusion of Observations) (𝐱𝑗 , 𝐲𝑗

)

∈   for all 𝑗 ∈  .

Axiom SD (Strong Disposability) If (𝐱, 𝐲) ∈  , then (�̂�, �̂�) ∈   for all �̂� ≥ 𝐱
and all 𝟎 ≤ �̂� ≤ 𝐲.

Axiom 𝜟RS (𝛥 Returns to Scale) 𝛿 ⊆   for all 𝛿 ∈ 𝛥, where 𝛥 ∈
{NI,V,ND,C} and NI =

[

0,1
]

, V = {1}, ND = [1,+∞), C = R+.

Axiom CT (Convexity of Technology)   is convex.
We can state technology  C

𝛥RS in its conventional operational form 
as follows: 
 C
𝛥RS =

{

(𝐱, 𝐲) ∈ R𝑚+ × R𝑠+ ∣ ∃𝝀 ∈ R𝐽 ∶
∑

𝑗∈
𝜆𝑗𝐱𝑗 ≤ 𝐱,

∑

𝑗∈
𝜆𝑗𝐲𝑗 ≥ 𝐲, 𝟏⊤𝝀 ∈ 𝛥, 𝝀 ≥ 𝟎

}

,
(1)

where the notation 𝛥 is as introduced in the statement of Axiom 𝛥RS. 
For example, if 𝛥 = C, then C = R+ and the condition 𝟏⊤𝝀 ∈ 𝛥
becomes redundant and can be removed. This defines the standard CRS 
technology. If 𝛥 = NI, then NI = [0,1] and the condition 𝟏⊤𝝀 ∈ 𝛥
becomes 0 ≤ 𝟏⊤𝝀 ≤ 1, which defines the NIRS technology.

2.3. Production trade-offs in convex technologies

Following Podinovski (2004d), a production trade-off is a statement 
of simultaneous changes to the inputs and outputs that are assumed 
technologically possible at any DMU in technology   (provided the 
inputs and outputs of resulting DMU remain nonnegative). Suppose we 
have specified 𝐾 production trade-offs. Formally, these can be stated 
as 𝐾 pairs of vectors 
(

𝐩𝑘,𝐪𝑘
)

, 𝑘 ∈  = {1,… , 𝐾}, (2)

where the vectors 𝐩𝑘 ∈ R𝑚 and 𝐪𝑘 ∈ R𝑠 represent simultaneous changes 
to the inputs and outputs of the DMUs, respectively.

The application of any single trade-off to any DMU (𝐱, 𝐲) ∈   creates 
another DMU in the technology, to which we can further apply the 
same or any other of the trade-offs. Allowing a fractional number of 
times 𝜋𝑘 ≥ 0 that each trade-off (2) is applied, we state the resulting 
DMU as 

(𝐱′, 𝐲′) = (𝐱, 𝐲) +
∑

𝜋𝑘(𝐩𝑘,𝐪𝑘). (3)

𝑘∈

3 
The assumption that production trade-offs (2) represent feasible 
simultaneous changes to the inputs and outputs of any DMU in the 
technology is stated by the following axiom.
Axiom FTO (Feasibility of Trade-Offs) If DMU (𝐱, 𝐲) ∈  , then the 
DMU (𝐱′, 𝐲′) defined by (3) is in  , provided 𝐱 +

∑

𝑘∈ 𝜋𝑘𝐩𝑘 ≥ 𝟎 and 
𝐲 +

∑

𝑘∈ 𝜋𝑘𝐪𝑘 ≥ 𝟎.

Remark 1. Podinovski (2004d) uses a different variant of Axiom FTO 
which assumes that a modification of DMU (𝐱, 𝐲) by any single trade-
off (2) is technologically possible. In Appendix  A, we compare the two 
axioms and show that Axiom FTO is generally a stronger assumption 
than the original axiom of Podinovski (2004d). However, as follows 
from the proof of Theorem 1 in Podinovski (2004d), in any closed 
technology, the two axioms are equivalent. Let us also note that the 
above Axiom FTO is a special case of the axiom of production trade-
offs used by Podinovski, Wu, and Argyris (2024) for the technology 
with both volume and ratio types of inputs and outputs.

The specification of production trade-offs (2) for technology 
generates additional (unobserved) DMUs that are assumed to be tech-
nologically possible. Using the minimum extrapolation principle, we 
define technology  C

𝛥RS-TO, which extends the technology  C
𝛥RS by the 

application of trade-offs (2), as the intersection of all technologies 
 ⊂ R𝑚+ × R𝑠+ that satisfy Axioms IO, SD, CT, 𝛥RS and FTO.

Podinovski (2004d) establishes operational statements of technol-
ogy  C

𝛥RS-TO in the cases of CRS and VRS. It is straightforward to 
verify that the mathematical derivation of these statements extends to 
the cases of NIRS and NDRS, with obvious minor modifications. This 
results in the following unified statement of technology  C

𝛥RS-TO, which 
includes the cases of VRS, CRS, NIRS and NDRS: 
 C
𝛥RS-TO =

{

(𝐱, 𝐲) ∈ R𝑚+ × R𝑠+ ∣ ∃𝝀 ∈ R𝐽 , 𝝅 ∈ R𝐾 ∶
∑

𝑗∈
𝜆𝑗𝐱𝑗 +

∑

𝑘∈
𝜋𝑘𝐩𝑘 ≤ 𝐱,

∑

𝑗∈
𝜆𝑗𝐲𝑗 +

∑

𝑘∈
𝜋𝑘𝐪𝑘 ≥ 𝐲,

𝟏⊤𝝀 ∈ 𝛥,𝝀 ≥ 𝟎, 𝝅 ≥ 𝟎
}

.

(4)

We conclude this section by stating the embedding 
 C
𝛥RS ⊆  C

𝛥RS-TO. (5)

This embedding is easy to prove. Indeed, any DMU (𝐱, 𝐲) ∈  C
𝛥RS

satisfies conditions of the statement (1) with some vector 𝝀′. Then it 
also satisfies all conditions of the statement (4) of technology  C

𝛥RS-TO
with the same vector 𝝀′ and vector 𝝅 = 𝟎. Therefore, (𝐱, 𝐲) ∈  C

𝛥RS-TO, 
and the embedding (5) follows.

3. Nonconvex technologies with production trade-offs

In this section, we develop an extension of the notion of production 
trade-offs to the FDH model of technology and its variants for the cases 
of CRS, NIRS and NDRS.

3.1. Axiomatic definitions

Removing the assumption of convexity and using the minimum 
extrapolation principle, we define the nonconvex technology  NC

𝛥RS as 
the intersection of all technologies  ⊂ R𝑚+ ×R𝑠+ that satisfy Axioms IO, 
SD and 𝛥RS. (The superscript NC identifies the nonconvex case).

A conventional statement (see, e.g., Briec et al., 2004) of this 
technology is 
 NC
𝛥RS =

{

(𝐱, 𝐲) ∈ R𝑚+ × R𝑠+ ∣ ∃𝝀 ∈ R𝐽 , 𝛿 ∈ R∶
∑

𝑗∈
𝛿𝜆𝑗𝐱𝑗 ≤ 𝐱,

∑

𝑗∈
𝛿𝜆𝑗𝐲𝑗 ≥ 𝐲,

𝟏⊤𝝀 = 1, 𝝀 ∈ {0,1}𝐽 , 𝛿 ∈ 
}

.

(6)
𝛥
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For example, if 𝛥 = V, then 𝛿 = 1 and technology  NC
𝛥RS is the 

standard FDH technology. If 𝛥 = C, then 𝛿 ∈ R+, and we obtain the 
CRS variant of the FDH technology.

Let us now consider an extension of the nonconvex technology  NC
𝛥RS

by the incorporation of production trade-offs (2). Using the minimum 
extrapolation principle, we define the extended technology  NC

𝛥RS-TO as 
the intersection of all technologies  ⊂ R𝑚+ ×R𝑠+ that satisfy Axioms IO, 
SD, 𝛥RS and FTO.

Because technology  NC
𝛥RS-TO satisfies Axioms IO, SD and 𝛥RS, and 

because technology  NC
𝛥RS is the smallest technology satisfying the same 

axioms, we have the following embedding: 
 NC
𝛥RS ⊆  NC

𝛥RS-TO. (7)

The above axiomatic definition of technology  NC
𝛥RS-TO is not oper-

ational and cannot be used in computations. Below we develop three 
different approaches that operationalize this definition. Each of these 
approaches is useful for different tasks.

Remark 2.  Technology  NC
𝛥RS-TO includes the cases of the standard 

FDH technology extended by production trade-offs (2) and its three 
(CRS, NIRS and NDRS) variants. The extended FDH technology may 
arguably be the most interesting for practical applications in which we 
are primarily interested in the assessment of efficiency of the DMUs. 
The CRS, NIRS and NDRS technologies are important for the evaluation 
of MPSS of a DMU, as introduced to DEA by Banker (1984), and the 
direction of resizing that a DMU should undertake in its movement 
towards MPSS.

For convex technologies (which do not include technology  NC
𝛥RS-TO), 

such approach was developed by Färe, Grosskopf, and Lovell (1983, 
1985) as a qualitative method of evaluation of local returns to scale 
(RTS), which is consistent with the notion of scale elasticity but does 
not require its calculation. (The local characterization of RTS based on 
the calculation of one-sided scale elasticities was considered in detail 
by Banker and Thrall (1992), Hadjicostas and Soteriou (2006), Førsund, 
Hjalmarsson, Krivonozhko, and Utkin (2007), Sahoo and Tone (2015), 
and Podinovski, Chambers, Atici, and Deineko (2016).)

Podinovski (2004a, 2004b) modifies this approach for the case of 
arbitrary nonconvex technologies, which applies to all technologies 
 NC
𝛥RS-TO and leads to the notion of global returns to scale as an indi-
cator of the direction to MPSS. For nonconvex technologies, the local 
and global RTS are generally two different characterizations of the 
production frontier. We illustrate the use of the nonconvex CRS, NIRS 
and NDRS technologies for the evaluation of global RTS in technology 
 NC
VRS-TO in the application in Section 7.

3.2. A basic statement

We can obtain the statement of technology  NC
𝛥RS-TO by a simple adap-

tation of the statement (6) of technology  NC
𝛥RS in which we incorporate 

production trade-offs (2) as in the statement (4) of its convex analogue 
technology  C

𝛥RS-TO.

Theorem 3.1.  Technology  NC
𝛥RS-TO is equivalently stated as follows: 

 NC
𝛥RS-TO =

{

(𝐱, 𝐲) ∈ R𝑚+ × R𝑠+ ∣

∃𝝀 ∈ R𝐽 , 𝛿 ∈ R, 𝝅 ∈ R𝐾 ∶
∑

𝑗∈
𝛿𝜆𝑗𝐱𝑗 +

∑

𝑘∈
𝜋𝑘𝐩𝑘 ≤ 𝐱,

∑

𝑗∈
𝛿𝜆𝑗𝐲𝑗 +

∑

𝑘∈
𝜋𝑘𝐪𝑘 ≥ 𝐲,

𝟏⊤𝝀 = 1, 𝝀 ∈ {0,1}𝐽 , 𝛿 ∈ 𝛥,𝝅 ≥ 𝟎
}

.

(8)

The above statement of technology  NC
𝛥RS-TO is in line with traditional 

statements of DEA technologies and is therefore intuitive and easy for 
interpretation. In the case of VRS, the condition 𝛿 ∈   becomes 𝛿 = 1, 
𝛥

4 
and both input and output inequalities become linear. Assessing the 
input or output radial efficiency of a DMU using this statement of 
technology  NC

VRS-TO requires solving a mixed integer linear program.
In the cases of CRS, NIRS and NDRS, the statement (8) includes 

nonlinear terms 𝛿𝜆𝑗 in the input and output inequalities and becomes 
problematic from the computational perspective. One way to linearize 
such statement is by the use of the substitution of variables and ‘‘Big 
M’’ approach, as developed by Podinovski (2004c) for the statement (6) 
of technology  NC

𝛥RS (without trade-offs).

3.3. A decomposition-based statement

Briec et al. (2004) note that, in the conventional case without trade-
offs, technology  NC

𝛥RS is the union of 𝐽 elementary ‘‘subtechnologies’’ 
 NC
𝛥RS

(

𝐱𝑗 , 𝐲𝑗
) each of which is generated by a single observed DMU 

(

𝐱𝑗 , 𝐲𝑗
)

, 𝑗 ∈  . Below we show that this approach extends to the 
case involving production trade-offs (2). The statement of each such 
elementary subtechnology is given by linear inequalities, which is 
attractive from the computational point of view.

To state this formally, for each 𝑗 ∈  , we denote 𝑗
𝛥RS-TO the 𝛥-

strong disposal hull of the observed DMU (𝐱𝑗 , 𝐲𝑗
) that incorporates 

production trade-offs (2): 

𝑗
𝛥RS-TO =

{

(𝐱, 𝐲) ∈ R𝑚+ × R𝑠+ ∣ ∃ 𝛿 ∈ R, 𝝅 ∈ R𝐾 ∶

𝛿𝐱𝑗 +
∑

𝑘∈
𝜋𝑘𝐩𝑘 ≤ 𝐱,

𝛿𝐲𝑗 +
∑

𝑘∈
𝜋𝑘𝐪𝑘 ≥ 𝐲,

𝛿 ∈ 𝛥, 𝝅 ≥ 𝟎
}

.

(9)

We now have the following representation of technology  NC
𝛥RS-TO

which extends a similar representation of technology  NC
𝛥RS obtained by 

Briec et al. (2004) for the standard case without production trade-offs.

Theorem 3.2.  Technology  NC
𝛥RS-TO is equivalently stated as follows: 

 NC
𝛥RS-TO =

⋃

𝑗∈
𝑗
𝛥RS-TO. (10)

Remark 3. Theorem  3.2 restates technology  NC
𝛥RS-TO as a finite union 

of the hulls 𝑗
𝛥RS-TO, 𝑗 ∈  . Depending on 𝛥, each of these hulls can be 

regarded as the convex VRS, NIRS, NDRS or CRS technology generated 
by the single observed DMU (𝐱𝑗 , 𝐲𝑗

)

, 𝑗 ∈  , and the trade-offs (2). 
This means that the trade-offs (2) allow the standard interpretation 
as restrictions on the normal vectors of the supporting hyperplanes 
to the individual hulls, or as weight restrictions in the corresponding 
multiplier models based on them (Podinovski, 2004d).

The statement (10) of technology  NC
𝛥RS-TO is useful for its graphical 

depictions as the union of the hulls 𝑗
𝛥RS-TO defined by (9), each of 

which is straightforward to visualize. We illustrate this by the following 
example.

Example 1.  Let 𝐴 = (2,2), 𝐵 = (6,6) and 𝐶 = (8,4) be three observed 
DMUs, where the first component is input 𝑥 and the second is output 𝑦. 
Also consider the following two trade-offs: 
(

𝑝1, 𝑞1
)

= (−1,−2) ,
(

𝑝2, 𝑞2
)

= (4,2) . (11)

The nonconvex technology  NC
VRS generated by the observed DMUs 

𝐴, 𝐵 and 𝐶 is shown in Fig.  1 as the darker shaded area below and to 
the right of the line 𝑈𝐴𝐹𝐵𝑉 .

The areas below and to the right of the lines 𝐴′𝐴𝐴′′, 𝐵′𝐵𝐵′′ and 
𝐶 ′𝐶𝐶 ′′ show the three hulls 𝐴

VRS-TO, 𝐵
VRS-TO and 𝐶

VRS-TO, respec-
tively. For example, the point 𝐶∗ is obtained by the application of 
trade-off (𝑝1, 𝑞1

) to DMU 𝐵 in proportion 𝜋1 = 1 and is therefore in 
the hull 𝐵 .
VRS-TO
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Fig. 1. Technology  NC
VRS-TO in Example  1.

By Theorem  3.2, technology  NC
VRS-TO is the union of these three hulls, 

i.e., the total shaded area below the line 𝐴′𝐴𝐷𝐵𝐵′′.
It is worth highlighting that, in line with the embedding (7), the 

specification of trade-offs (11) has expanded the underlying technology 
 NC
VRS. As a result, for example, the input radial target of DMU 𝐶 moves 
from the point �̄� in technology  NC

VRS to point 𝐶∗ in technology  NC
VRS-TO, 

and the input radial efficiency of DMU 𝐶 decreases from 6∕8 = 0.75 to 
5∕8 = 0.625.

In Sections 5 and 6, we show that the statement (10) is also useful 
for computational purposes, as it requires solving 𝐽 linear programs for 
the assessment of efficiency of each DMU.

The statement (10) can be used for establishing some properties 
of technology  NC

𝛥RS-TO, which are more difficult to obtain from its 
alternative statements. As an example, let us prove that technology 
 NC
𝛥RS-TO is a closed set.

Theorem 3.3.  For each 𝑗 ∈  , the hull 𝑗
𝛥RS-TO is a polyhedral and, 

therefore, closed and convex set.

Corollary 3.1.  Technology  NC
𝛥RS-TO is a closed set.

It is a simple mathematical fact that the conventional convex VRS 
technology is the convex hull of the FDH technology, i.e., conv ( NC

VRS
)

=
 C
VRS. Interestingly, the same equality is generally not true for tech-
nologies incorporating trade-offs (2) and we only have the embedding 
(which follows from the embedding  NC

VRS-TO ⊆  C
VRS-TO): 

conv
(

 NC
VRS-TO

)

⊆  C
VRS-TO. (12)

The following is an example with two inputs and two outputs in 
which the embedding (12) is proper.

Example 2.  Consider the two observed DMUs (𝐱1, 𝐲1
)

= (2,0,10,1)⊤
and (𝐱2, 𝐲2

)

= (0,2,10,1)⊤, and the single trade-off (𝐩,𝐪) = (−0.5,−0.5,
−5,−1)⊤, where the first two components are inputs and the last two 
components are outputs. Consider the convex and nonconvex VRS tech-
nologies  C

VRS-TO and  NC
VRS-TO generated by the above observed DMUs 

and the trade-off, and the convex hull conv
(

 NC
VRS-TO

)

 of the nonconvex 
technology.

The simple average of DMUs (𝐱1, 𝐲1
) and (𝐱2, 𝐲2

) is the DMU 
(1,1,10,1)⊤. Modifying this DMU by the trade-off (𝐩,𝐪), we obtain the 
DMU (𝐱′, 𝐲′) = (0.5,0.5,5,0)⊤ ∈  C

VRS-TO.
Let us show that DMU (

𝐱′, 𝐲′
) is not in the convex hull

conv
(

 NC
VRS-TO

)

. Indeed, any DMU (𝐱, 𝐲) ∈  NC
VRS-TO is located in either 

hull 𝑗
VRS-TO, 𝑗 = 1,2, or in both of them. Suppose that (𝐱, 𝐲) ∈ 1

VRS-TO. 
According to (9) in which 𝛿 = 1, and taking into account that 𝐲 ≥ 𝟎, 
5 
observe that the multiplier 𝜋 used with the trade-off (𝐩,𝐪) cannot 
be larger than 1 (as otherwise the total on the left-hand side of the 
inequality 1+𝜋(−1) ≥ 𝑦2 for output 2 becomes negative). Then input 1 
of DMU (𝐱, 𝐲) is greater than or equal to 2 − 0.5 = 1.5. Similarly, 
input 2 of any DMU in the hull 2

VRS-TO is greater than or equal 
to 1.5. Therefore, the sum of inputs 1 and 2 of any DMU in technology 
 NC
VRS-TO = 1

VRS-TO ∪2
VRS-TO is greater than or equal to 1.5. The same 

is true for any DMU in the convex hull conv
(

 NC
VRS-TO

)

. This means that 
the DMU (𝐱′, 𝐲′) = (0.5,0.5,5,0)⊤, for which the sum of two inputs is 
equal to 1, is not in conv

(

 NC
VRS-TO

)

.

It turns out that, in the case of a single input 𝑥 and a single 
output 𝑦, the embedding (12) becomes an equality. We prove this result 
under the assumption that technology  C

VRS-TO does not allow unlimited 
production of output 𝑦 from any fixed input 𝑥, which is a standard 
production assumption (see, e.g., Färe et al., 1985). (We discuss this 
assumption further in Section 4.)

Theorem 3.4.  In the case of a single input 𝑥 and a single output 𝑦, the 
embedding (12) is satisfied as an equality, i.e., conv ( NC

VRS-TO
)

=  C
VRS-TO.

3.4. A linearized statement

Technology  NC
𝛥RS-TO can also be represented using a single linearized 

statement, using the idea of Afsharian and Podinovski (2018) and 
its extension to the whole class of technologies  NC

𝛥RS by Mehdiloo, 
Sadeghi, and Kerstens (2024). From a computational perspective, using 
this statement for the efficiency assessment requires solving a single 
linear program for each DMU under the assessment, which offers clear 
computational advantages.

Theorem 3.5.  Technology  NC
𝛥RS-TO is equivalently stated as follows: 

 NC
𝛥RS-TO =

{

(𝐱, 𝐲) ∈ R𝑚+ × R𝑠+ ∣

∃𝝀, 𝜼 ∈ R𝐽 ,𝝅𝑗 ∈ R𝐾 , 𝑗 ∈  ∶

𝜆𝑗𝐱𝑗 +
∑

𝑘∈
𝜋𝑗𝑘𝐩𝑘 ≤ 𝜂𝑗𝐱, 𝑗 ∈  ,

𝜆𝑗𝐲𝑗 +
∑

𝑘∈
𝜋𝑗𝑘𝐪𝑘 ≥ 𝜂𝑗𝐲, 𝑗 ∈  ,

𝜆𝑗 − 𝜂𝑗 ∈ 𝛥, 𝑗 ∈  ,

𝟏⊤𝜼 = 1,

𝝀, 𝜼 ≥ 𝟎, 𝝅𝑗 ≥ 0, 𝑗 ∈ 
}

,

(13)

where NI = −R+, V = {0}, ND = R+ and C = R.

Let us clarify the meaning of statement (13). Assume that DMU (𝐱, 𝐲)
satisfies conditions in (13) with some vectors 𝝀, 𝜼 and 𝝅𝑗 , 𝑗 ∈  . It is 
straightforward to verify that, for each 𝑗′ such that 𝜂𝑗′ > 0, the DMU 
(𝐱, 𝐲) satisfies all conditions of the statement (9) of the hull 𝑗

𝛥RS-TO
for 𝑗 = 𝑗′, if we define 𝛿 = 𝜆𝑗′∕𝜂𝑗′  and 𝝅 = 𝝅𝑗′∕𝜂𝑗′ . Therefore, DMU 
(𝐱, 𝐲) ∈ 𝑗′

𝛥RS-TO, for each 𝑗′ such that 𝜂𝑗′ > 0. (It is of course possible 
that (𝐱, 𝐲) ∈ 𝑗

𝛥RS-TO and 𝜂𝑗 = 0.)
Conversely, let DMU (𝐱, 𝐲) be in the hull 𝑗′

𝛥RS-TO, for some 𝑗′ ∈  , 
and, therefore, satisfy conditions in (9) stated for 𝑗 = 𝑗′, with some 
scalar 𝛿 and vector 𝝅. Then (𝐱, 𝐲) satisfies all conditions in (13) if we 
take 𝜂𝑗′ = 𝛿, 𝝅𝑗′ = 𝝅 and 𝜂𝑗 = 0, 𝝅𝑗 = 𝟎, for all 𝑗 ∈  ⧵ {𝑗′}.

Remark 4.  In the case of FDH, we have 𝛥 = {0} and, therefore, 
𝜼 = 𝝀. This simplifies the statement (13) of technology  NC

VRS-TO which 
can be viewed as a special case of the metatechnology developed by 
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Afsharian and Podinovski (2018):
 NC
VRS-TO =

{

(𝐱, 𝐲) ∈ R𝑚+ × R𝑠+ ∣

∃𝝀 ∈ R𝐽 ,𝝅𝑗 ∈ R𝐾 , 𝑗 ∈  ∶

𝜆𝑗𝐱𝑗 +
∑

𝑘∈
𝜋𝑗𝑘𝐩𝑘 ≤ 𝜆𝑗𝐱, 𝑗 ∈  ,

𝜆𝑗𝐲𝑗 +
∑

𝑘∈
𝜋𝑗𝑘𝐪𝑘 ≥ 𝜆𝑗𝐲, 𝑗 ∈  ,

𝟏⊤𝝀 = 1,

𝝀 ≥ 𝟎, 𝝅𝑗 ≥ 0, 𝑗 ∈ 
}

.

4. Consistent production trade-offs

In the case of convex multiplier VRS and CRS models, one known 
possible side effect of weight restrictions is that they may be too 
restrictive and render the resulting programs infeasible. As shown by 
Podinovski and Bouzdine-Chameeva (2013, 2015), such outcome is 
explained by the fact that the technology expanded by the production 
trade-offs dual to the weight restrictions allows free or unlimited pro-
duction of a nonzero output vector (we define this formally below.) 
Podinovski and Bouzdine-Chameeva (2015) call such production trade-
offs and corresponding weight restrictions inconsistent with the dataset 
of observed DMUs. Moreover, they show that inconsistent trade-offs 
may be undetected by standard calculations of efficiency, in which 
case the problem with trade-offs remains unknown to the analyst but 
still results in erroneous efficiency scores. In summary, Podinovski and 
Bouzdine-Chameeva (2013, 2015) argue that it is good practice to 
check the consistency of trade-offs in any application, for which they 
develop analytical and programming tests.

In this section, we consider the notion of consistent trade-offs in 
nonconvex production technologies  NC

𝛥RS-TO and develop exact and 
sufficient tests for checking their consistency.

We start with formal definitions. Given a nonzero output vector 
𝐲𝑜 ∈ R𝑠+∖{𝟎}, technology   allows free production of 𝐲𝑜 if (𝟎, 𝐲𝑜) ∈  , 
and unlimited production of 𝐲𝑜 if there exists some input vector 𝐱𝑜 ∈ R𝑚+, 
such that (𝐱𝑜, 𝛼𝐲𝑜

)

∈   for all 𝛼 ≥ 0.
We further say that the trade-offs (2) are consistent in technology 

 NC
𝛥RS-TO if such technology does not allow free production and does 
not allow unlimited production (of any nonzero vector of outputs 𝐲𝑜 ∈
R𝑠+∖{𝟎}), and are inconsistent otherwise.

Example 3.  Consider the modified Example  1 in which, instead of the 
trade-off (𝑝1, 𝑞1

)

= (−1,−2), we have specified the trade-off 
(

�̃�1, 𝑞1
)

= (−2,−1) . (14)

The resulting technology  NC
VRS-TO is shown in Fig.  2 as the overall 

shaded area below the line 𝐵′𝐵𝐵′′. Note that the point 𝐵′ represents 
free production and, therefore, the trade-off (�̃�1, 𝑞1

) is inconsistent with 
the dataset.

In this example, after the specification of trade-off (14), DMU 𝐴
becomes inefficient. Its input radial efficiency becomes equal to 0∕2 = 0
and its projection 𝐴∗ also represents free production, which indicates 
that an error was made in the specification of this trade-off.

If the observed dataset excluded DMU 𝐴 and consisted only of DMUs 
𝐵 and 𝐶, then the fact that the trade-offs are inconsistent would not be 
detected by the evaluation of efficiency, as both radial targets of DMUs 
𝐵 and 𝐶, and their efficiency scores, appear unproblematic. However, 
such scores would not be acceptable because the projection of DMU 𝐶
is located on the line 𝐵′𝐵 which is unrealistic. This observation means 
that the consistency of trade-offs cannot be confirmed just by seemingly 
unproblematic efficiency scores and needs to be tested. We consider this 
below.

Note that, in this example, the single trade-off (14) is clearly the 
cause of free production. However, generally, individual trade-offs may 
not be problematic in this sense, but taken together, they can be 
inconsistent. Podinovski and Bouzdine-Chameeva (2013) consider this 
in detail.
6 
Fig. 2. Inconsistent trade-offs generating free production in Example  3.

4.1. Mathematical results

In this section, we obtain several mathematical results that clarify 
the notion of consistent trade-offs and are useful in the development of 
tests of their consistency.

According to Theorem  3.2, technology  NC
𝛥RS-TO is the union of hulls 

𝑗
𝛥RS-TO, 𝑗 ∈  . Each of these hulls can be viewed as an elementary 

convex subtechnology generated by a single observed DMU (𝐱𝑗 , 𝐲𝑗
) and 

trade-offs (2), under the assumption of 𝛥RS. It is clear that the trade-
offs (2) are consistent in technology  NC

𝛥RS-TO if and only if they are 
consistent in each hull 𝑗

𝛥RS-TO, 𝑗 ∈  .
This observation allows us to extend the results proved by Podi-

novski and Bouzdine-Chameeva (2013) in the case of convex technolo-
gies, to their nonconvex analogues.

Theorem 4.1.  Technology  NC
CRS-TO allows free production of vector 𝐲𝑜 if 

and only if it allows its unlimited production.
It is worth noting that Theorem  4.1 is not true in the cases of 

VRS, NIRS and NDRS. For example, as shown by Podinovski and 
Bouzdine-Chameeva (2013), a convex VRS technology (and, similarly, 
its nonconvex variant  NC

VRS-TO) may allow free production but disallow 
unlimited production, and vice versa.

Theorem 4.2.  Technology  NC
VRS-TO allows free or unlimited production of 

vector 𝐲𝑜 if and only if technology  NC
CRS-TO allows its free and, by Theorem 

4.1, its unlimited production. In other words, the trade-offs (2) are consistent 
or inconsistent in technology  NC

VRS-TO if and only if they are consistent or, 
respectively, inconsistent in technology  NC

CRS-TO.

Another simple but useful observation is that, if technology   is 
a subset of technology  ′, i.e.,  ⊆  ′, and technology   allows 
free or unlimited production, then technology  ′ also allows free or, 
respectively, unlimited production. Note that technology  NC

VRS-TO is a 
subset of both technologies  NC

NIRS-TO and  NC
NDRS-TO, and the two latter 

technologies are subsets of technology  NC
CRS-TO. This allows us to extend 

the statement of Theorem  4.2 as follows.

Theorem 4.3.  The trade-offs (2) are consistent in any one of the four 
technologies  NC

VRS-TO,  NC
NIRS-TO,  NC

NDRS-TO or  NC
CRS-TO if and only if they are 

consistent in all of these technologies.
This last result implies that we do not need to develop tests of 

consistency of trade-offs for each of the four technologies named in its 
statement. Instead, it suffices to test their consistency only in technol-
ogy  NC

CRS-TO. Furthermore, by Theorem  4.1, it suffices to test only if this 
technology allows unlimited production. This significantly simplifies 
our task, which is considered below.
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4.2. Exact test of consistency

As shown in the previous section, the issue of consistency of trade-
offs (2) in any of the four nonconvex technologies  NC

𝛥RS-TO is reduced 
to their consistency in the technology  NC

CRS-TO. According to Theorem 
4.1, it suffices to test if technology  NC

CRS-TO allows free production of 
any nonzero output vector 𝐲𝑜.

Clearly, technology  NC
CRS-TO does not allow free production if and 

only if the optimal value 𝑦∗ of the following program is equal to zero, 
in which 𝐲 is a variable vector: 
𝑦∗ =max 𝟏⊤𝐲

subject to

(𝟎, 𝐲) ∈  NC
CRS-TO,

𝐲 ≥ 𝟎.

(15)

Note that, if program (15) has a nonzero feasible vector 𝐲 ≠ 𝟎 (in 
which case technology  NC

CRS-TO allows free production) then, for any 
𝛼 ≥ 0, the scaled DMU (𝛼𝟎, 𝛼𝐲) = (𝟎, 𝛼𝐲) ∈  NC

CRS-TO. In this case, in line 
with Theorem  4.1, technology  NC

CRS-TO allows unlimited production of 
vector 𝐲 and program (15) has an unbounded objective function.

To solve program (15), we may use any of the statements (8), (10) 
and (13) of technology  NC

𝛥RS-TO, specified for the case of CRS. However, 
using the first and last options would result in a nonlinear program, 
and the statement (10) appears computationally more attractive.

Indeed, because technology  NC
𝛥RS-TO is the union of hulls 

𝑗
𝛥RS-TO, 

𝑗 ∈  , instead of solving program (15), we can test if any of the hulls 
𝑗
𝛥RS-TO, 𝑗 ∈  , allows free production. We state this as the following 

simple theorem.

Theorem 4.4.  The trade-offs (2) are consistent in technology  NC
CRS-TO if 

and only if, for each 𝑗 ∈  , the optimal value 𝑦∗(𝑗) of the following linear 
program is equal to zero: 
𝑦∗(𝑗) =max 𝟏⊤𝐲

subject to

𝛿𝐱𝑗 +
∑

𝑘∈
𝜋𝑘𝐩𝑘 ≤ 𝟎,

𝛿𝐲𝑗 +
∑

𝑘∈
𝜋𝑘𝐪𝑘 ≥ 𝐲,

𝛿 ≥ 0, 𝝅 ≥ 𝟎, 𝐲 ≥ 𝟎.

(16)

According to Theorem  4.4, to test the consistency of trade-offs (2), 
it suffices to solve linear programs (16) for all 𝑗 ∈   and verify that all 
their optimal values are finite and equal to zero. If program (16) has an 
unbounded objective function for at least one 𝑗 ∈  , then technology 
 NC
CRS-TO allows free and unlimited production and the trade-offs (2) are 
inconsistent.

4.3. Sufficient test of consistency

The nonconvex CRS technology  NC
CRS-TO is a subset of the convex 

CRS technology  C
CRS-TO. If the former technology allows free or unlim-

ited production, then the latter also allows it. This implies that, if the 
trade-offs (2) are consistent in the convex technology  C

CRS-TO, then they 
are also consistent in the nonconvex technology  NC

CRS-TO.
Similar to the approach of Podinovski and Bouzdine-Chameeva 

(2013), testing consistency of trade-offs (2) in technology  C
CRS-TO can 

be done by solving a single linear program. Namely, the trade-offs (2) 
are consistent in technology  C

CRS-TO if and only if the optimal value �̂�
of the following linear program is equal to zero:
�̂� =max 𝟏⊤𝐲

subject to

(𝟎, 𝐲) ∈  C
CRS-TO,
𝐲 ≥ 𝟎.
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This program is restated in the extended form as follows: 
�̂� =max 𝟏⊤𝐲

subject to
∑

𝑗∈
𝜆𝑗𝐱𝑗 +

∑

𝑘∈
𝜋𝑘𝐩𝑘 ≤ 𝟎,

∑

𝑗∈
𝜆𝑗𝐲𝑗 +

∑

𝑘∈
𝜋𝑘𝐪𝑘 ≥ 𝐲,

𝐲 ≥ 𝟎,𝝀 ≥ 𝟎,𝝅 ≥ 𝟎.

(17)

The next example shows that the consistency of trade-offs in the 
convex technology  C

CRS-TO is only a sufficient, but not necessary, 
condition of their consistency in technology  NC

CRS-TO. Therefore, if pro-
gram (17) has an unbounded objective function, this does not necessar-
ily mean that the objective function of program (15) is also unbounded 
and that, equivalently, trade-offs (2) are inconsistent in technology 
 NC
CRS-TO.

Example 4.  Consider a modified setting used in Example  2, with 
the same two observed DMUs (𝐱1, 𝐲1

)

= (2,0,10,1)⊤ and (𝐱2, 𝐲2
)

=
(0,2,10,1)⊤, where the first two components are inputs and the last 
two components are outputs. Let the single trade-off be (𝐩,𝐪) =
(−1,−1,−5,−1)⊤.

Computations show that, in the described setting, the optimal values 
of both programs (16) stated for 𝑗 = 1,2 are equal to zero. However, the 
objective function of program (17) is unbounded. Therefore, the trade-
off (𝐩,𝐪) is consistent in all nonconvex technologies  NC

𝛥RS-TO, including 
its CRS and VRS variants, but is inconsistent in the convex technology 
 C
CRS-TO and, as proved by Podinovski and Bouzdine-Chameeva (2013), 
in technology  C

VRS-TO. (Similar to Theorem  4.3, it is straightforward to 
prove that the trade-off (𝐩,𝐪) is also inconsistent in the convex NIRS 
and NDRS variants of the technology.)

As an illustration of inconsistency of trade-off (𝐩,𝐪), consider the 
simple average of DMUs (𝐱1, 𝐲1

) and (𝐱2, 𝐲2
) equal to (1,1,10,1)⊤, 

which is an element of the four (VRS, NIRS, NDRS and CRS) convex 
technologies  C

𝛥RS-TO. Modifying this DMU by the trade-off (𝐩,𝐪), we 
obtain the DMU (𝐱′, 𝐲′) = (0,0,5,0)⊤. Therefore, all four convex 
technologies  C

𝛥RS-TO allow free production of the output vector 𝐲 =
(5,0)⊤ and the trade-off (𝐩,𝐪) is inconsistent in each of them.

Remark 5.  Theoretically, the equality �̂� = 0 is only sufficient but 
not necessary for the consistency of trade-offs (2) in the nonconvex 
technology  NC

CRS-TO. However, in practical applications, we may prefer 
to use this sufficient condition over the exact consistency test based 
on solving 𝐽 linear programs (16), for at least two reasons. First, the 
former is computationally more straightforward than the latter. Second, 
as Example  4 shows, it is theoretically possible that the objective 
function of program (17) is unbounded (informally, �̂� = +∞) but the 
trade-offs (2) are consistent in technology  NC

CRS-TO. However, even in 
this case, we may still be concerned that such trade-offs are inconsistent 
in its convex analogue  C

CRS-TO and decide to re-examine the trade-offs 
as potentially unreliable.

In the following sections of our paper, we assume that trade-offs 
(2) are consistent in technology  NC

𝛥RS-TO. This can be tested either by 
the exact approach discussed in Section 4.2, e.g., by solving 𝐽 linear 
programs (16), or by verifying the sufficient condition based on solving 
the single linear program (17).

5. Models based on directional distance function

In this section, we consider the assessment of efficiency of DMUs in 
technology  NC

𝛥RS-TO based on the directional distance function defined 
by Chambers, Chung, and Färe (1998). In the next Section 6, we adapt 
our results to the input and output radial measures of efficiency.

Consider assessing the efficiency of DMU (𝐱𝑜, 𝐲𝑜
)

∈  NC
𝛥RS-TO in the 

direction defined by the nonzero vector 𝐠 =
(

𝐠 , 𝐠
)

∈ R𝑚 ×R𝑠 . This is 
𝑥 𝑦 + +
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achieved by the evaluation of the directional distance function defined 
as follows: 
𝛽𝑜 =max 𝛽

subject to
(

𝐱𝑜 − 𝛽𝐠𝑥, 𝐲𝑜 + 𝛽𝐠𝑦
)

∈  NC
𝛥RS-TO,

𝛽 sign free.

(18)

Because, in program (18), the value 𝛽 = 0 is always feasible, 
the optimal value 𝛽𝑜 of the program (18) is nonnegative. The DMU 
(

𝐱𝑜, 𝐲𝑜
) is efficient in the direction of vector 𝐠 if 𝛽𝑜 = 0, and is 

inefficient otherwise. Program (18) identifies the directional projec-
tion (𝐱𝑜 − 𝛽𝑜𝐠𝑥, 𝐲𝑜 + 𝛽𝑜𝐠𝑦

) of the DMU (𝐱𝑜, 𝐲𝑜
) on the boundary of 

technology  NC
𝛥RS-TO.

Below we consider two computational approaches to the solution 
of program (18). The first of these, referred to as the decomposition 
approach, is based on the representation of technology (10) as the union 
of hulls 𝑗

𝛥RS-TO, 𝑗 ∈  , and requires solving 𝐽 linear programs, for 
each DMU (𝐱𝑜, 𝐲𝑜

) under the assessment. The second, referred to as the 
single-stage approach, is based on the statement of technology (13) and 
requires solving a single linear program.

5.1. The decomposition approach

By Theorem  3.2, technology  NC
𝛥RS-TO is the union of the hulls 

𝑗
𝛥RS-TO, 𝑗 ∈  . This implies that the optimal value 𝛽𝑜 of pro-

gram (18) can be found as the maximum of variable 𝛽 evaluated over 
all individual hulls 𝑗

𝛥RS-TO, 𝑗 ∈  , that include the DMU (𝐱𝑜, 𝐲𝑜
)

.
Formally, let DMU (𝐱𝑜, 𝐲𝑜

)

∈ 𝑗
𝛥RS-TO, 𝑗 ∈  . The efficiency of 

this DMU in the hull 𝑗
𝛥RS-TO is evaluated by the directional distance 

function 
𝛽(𝑗)𝑜 =max 𝛽

subject to
(

𝐱𝑜 − 𝛽𝐠𝑥, 𝐲𝑜 + 𝛽𝐠𝑦
)

∈ 𝑗
𝛥RS-TO,

𝛽 sign free.

(19)

Taking into account the statement (9) of the hulls 𝑗
𝛥RS-TO, we 

restate program (19) as the following linear program: 
𝛽(𝑗)𝑜 =max 𝛽 (20a)

subject to

𝛿𝐱𝑗 +
∑

𝑘∈
𝜋𝑘𝐩𝑘 ≤ 𝐱𝑜 − 𝛽𝐠𝑥, (20b)

𝛿𝐲𝑗 +
∑

𝑘∈
𝜋𝑘𝐪𝑘 ≥ 𝐲𝑜 + 𝛽𝐠𝑦, (20c)

𝐱𝑜 − 𝛽𝐠𝑥 ≥ 𝟎, (20d)

𝐲𝑜 + 𝛽𝐠𝑦 ≥ 𝟎, (20e)

𝛿 ∈ 𝛥, 𝝅 ≥ 𝟎, 𝛽 sign free. (20f)

In the above program, the constraints (20d) and (20e) are a restate-
ment of the condition (𝐱, 𝐲) ∈ R𝑚+ × R𝑠+ in the statement (9) of the hull 
𝑗
𝛥RS-TO.
As established by Chambers et al. (1998), the directional distance 

function 𝛽(𝑗)𝑜  provides a complete characterization of the hull 𝑗
𝛥RS-TO. 

Namely, the DMU (𝐱𝑜, 𝐲𝑜
)

∈ 𝑗
𝛥RS-TO if and only if program (20) is 

feasible and 𝛽(𝑗)𝑜 ≥ 0. (Because we assume that technology  NC
𝛥RS-TO

and therefore any of its hulls 𝑗
𝛥RS-TO, 𝑗 ∈  , do not allow free and 

unlimited production, if program (20) is feasible, then its optimal value 
𝛽(𝑗)𝑜  is finite.) This implies that the DMU (𝐱𝑜, 𝐲𝑜

)

∉ 𝑗
𝛥RS-TO if and only if 

𝛽(𝑗)𝑜 < 0 or program (20) is infeasible. In the latter case we can formally 
take 𝛽(𝑗)𝑜 = −∞.

It is now clear that we have 
𝛽𝑜 = max{𝛽(𝑗)𝑜 ∣ 𝑗 ∈  }. (21)
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In summary, in line with (21), the described approach to the compu-
tation of 𝛽𝑜 consists of solving the linear programs (20) stated for each 
𝑗 ∈  , and subsequently obtaining 𝛽𝑜 as the maximum of the optimal 
values of those linear programs that have a finite optimal value 𝛽(𝑗)𝑜 . 
(As agreed, if program (20) is infeasible, we formally take 𝛽(𝑗)𝑜 = −∞. 
We can ignore such cases in the computation of 𝛽𝑜 by formula (21)).

Remark 6.  The value 𝛽𝑜 calculated by formula (21) remains un-
changed if we solve all programs (20), 𝑗 ∈  , without the con-
straint (20e). We consider this in detail in Appendix  C. In particular, 
we prove that program (20) has a finite optimal value (nonnegative 
if the DMU (𝐱𝑜, 𝐲𝑜

)

∈ 𝑗
𝛥RS-TO and negative otherwise) if and only if 

program (20) with the constraint (20e) removed has a final optimal 
value, in which case the two optimal values are equal. Furthermore, if 
program (20) is infeasible (i.e., if (𝐱𝑜, 𝐲𝑜

)

∉ 𝑗
𝛥RS-TO), then program (20) 

without its constraint (20e) may have a finite negative optimal value. 
This does not affect the maximum 𝛽𝑜 in (21).

5.2. The single-stage approach

As an alternative to the decomposition approach that requires solv-
ing 𝐽 linear programs (20), below we consider a single-stage approach 
that requires solving a single LP, but of a higher dimensionality. (We 
use this approach in the application in Section 7.)

Based on the statement (13) of technology  NC
𝛥RS-TO, the directional 

distance function is restated in the following expanded form: 
𝛽𝑜 =max 𝛽 (22a)

subject to

𝜆𝑗𝐱𝑗 +
∑

𝑘∈
𝜋𝑗𝑘𝐩𝑘 ≤ 𝜂𝑗

(

𝐱𝑜 − 𝛽𝐠𝑥
)

, 𝑗 ∈  , (22b)

𝜆𝑗𝐲𝑗 +
∑

𝑘∈
𝜋𝑗𝑘𝐪𝑘 ≥ 𝜂𝑗

(

𝐲𝑜 + 𝛽𝐠𝑦
)

, 𝑗 ∈  , (22c)

𝜆𝑗 − 𝜂𝑗 ∈ 𝛥, 𝑗 ∈  , (22d)

𝐱𝑜 − 𝛽𝐠𝑥 ≥ 𝟎, (22e)

𝟏⊤𝜼 = 1, (22f)

𝝀, 𝜼 ≥ 𝟎, 𝝅𝑗 ≥ 𝟎, 𝑗 ∈  , 𝛽 sign free. (22g)

Note that 𝛽𝑜 ≥ 0 for any DMU (𝐱𝑜, 𝐲𝑜) ∈  NC
𝛥RS-TO. Therefore, 

the inequality (20e) would be redundant in model (22) and is not 
specified. Although program (22) is nonlinear, it can be linearized by 
the substitution 𝛽𝑗 = 𝜂𝑗𝛽, 𝑗 ∈  . The resulting linear program is 

𝛽𝑜 =max
∑

𝑗∈
𝛽𝑗 (23a)

subject to

𝜆𝑗𝐱𝑗 +
∑

𝑘∈
𝜋𝑗𝑘𝐩𝑘 ≤ 𝜂𝑗𝐱𝑜 − 𝛽𝑗𝐠𝑥, 𝑗 ∈  , (23b)

𝜆𝑗𝐲𝑗 +
∑

𝑘∈
𝜋𝑗𝑘𝐪𝑘 ≥ 𝜂𝑗𝐲𝑜 + 𝛽𝑗𝐠𝑦, 𝑗 ∈  , (23c)

𝜆𝑗 − 𝜂𝑗 ∈ 𝛥, 𝑗 ∈  , (23d)

𝜂𝑗𝐱𝑜 − 𝛽𝑗𝐠𝑥 ≥ 𝟎, 𝑗 ∈  , (23e)

𝟏⊤𝜼 = 1, (23f)

𝝀, 𝜼 ≥ 𝟎, 𝝅𝑗 ≥ 𝟎, 𝑗 ∈  , 𝜷 sign free vector. (23g)

The following theorem is true under the assumption that technol-
ogy  NC

𝛥RS-TO does not allow free production, which follows from the 
more general assumption that the trade-offs (2) are consistent with 
the dataset. (Formally, the next theorem also remains true under the 
alternative condition that the vector 𝐠𝑥 ≠ 𝟎.)

Theorem 5.1.  Program (22) has an optimal solution if and only if 
program (23) has an optimal solution, in which case their optimal values 
are equal: 𝛽 = 𝛽 .
𝑜 𝑜
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6. The input and output radial models

In this section, we consider the assessment of the input and output 
radial efficiency of the DMU (𝐱𝑜, 𝐲𝑜

) in technology  NC
𝛥RS-TO. We derive 

the required models as special cases of the directional distance function 
approach developed in Section 5.

6.1. The input-oriented model

Let 𝜃𝑜 denote the input radial efficiency of DMU (𝐱𝑜, 𝐲𝑜
) in tech-

nology  NC
𝛥RS-TO. The DMU (𝐱𝑜, 𝐲𝑜

) is input radial efficient if and only if 
𝜃𝑜 = 1. To evaluate 𝜃𝑜, we adapt the two approaches developed for the 
evaluation of directional distance function in Section 5.

The decomposition approach requires solving 𝐽 linear programs
(20) in which we take 𝐠 =

(

𝐱𝑜, 𝟎
) and make the substitution 𝜃 = 1− 𝛽: 

𝜃(𝑗)𝑜 =min 𝜃

subject to

𝛿𝐱𝑗 +
∑

𝑘∈
𝜋𝑘𝐩𝑘 ≤ 𝜃𝐱𝑜,

𝛿𝐲𝑗 +
∑

𝑘∈
𝜋𝑘𝐪𝑘 ≥ 𝐲𝑜,

𝛿 ∈ 𝛥, 𝝅 ≥ 𝟎, 𝜃 ≥ 0.

(24)

Note that the constraint (20d) of program (20) becomes the non-
negativity condition 𝜃 ≥ 0 in program (24), and the constraint (20e) is 
always true and is removed.

It is clear that, if (𝐱𝑜, 𝐲𝑜
)

∈ 𝑗
𝛥RS-TO, program (24) is feasible (with 

𝜃 = 1) and we have 0 ≤ 𝜃(𝑗)𝑜 ≤ 1. If (𝐱𝑜, 𝐲𝑜
)

∉ 𝑗
𝛥RS-TO, we can formally 

take 𝜃(𝑗)𝑜 = +∞. Then the input radial efficiency 𝜃𝑜 of the DMU (𝐱𝑜, 𝐲𝑜
)

in technology  NC
𝛥RS-TO is obtained by the variant of formula (21), which 

is stated as follows:
𝜃𝑜 = min{𝜃(𝑗)𝑜 ∣ 𝑗 ∈  }.

The linear programming approach of computing 𝜃𝑜 is based on 
solving the linear program (23) in which we take 𝐠 =

(

𝐱𝑜, 𝟎
) and make 

the variable substitution 𝜽 = 𝜼−𝜷. Then 𝜃𝑜 is equal to the optimal value 
of the following linear program:
𝜃𝑜 =min

∑

𝑗∈
𝜃𝑗

subject to

𝜆𝑗𝐱𝑗 +
∑

𝑘∈
𝜋𝑗𝑘𝐩𝑘 ≤ 𝜃𝑗𝐱𝑜, 𝑗 ∈  ,

𝜆𝑗𝐲𝑗 +
∑

𝑘∈
𝜋𝑗𝑘𝐪𝑘 ≥ 𝜂𝑗𝐲𝑜, 𝑗 ∈  ,

𝜆𝑗 − 𝜂𝑗 ∈ 𝛥, 𝑗 ∈  ,

𝟏⊤𝜼 = 1, 𝝀, 𝜼,𝜽 ≥ 𝟎, 𝝅𝑗 ≥ 0, 𝑗 ∈  .

6.2. The output-oriented model

Let 𝜓𝑜 denote the output radial efficiency of the DMU (𝐱𝑜, 𝐲𝑜
) in 

technology  NC
𝛥RS-TO. The DMU (𝐱𝑜, 𝐲𝑜

) is output radial efficient if and 
only if 𝜓𝑜 = 1. The output radial efficiency of the DMU (𝐱𝑜, 𝐲𝑜

) is equal 
to the inverse of the maximal output improvement factor of this DMU 
in technology   NC

𝛥RS-TO.
Following the decomposition approach developed in Section 5.1, 

we solve 𝐽 linear programs derived from programs (20) by taking 
𝐠 =

(

𝟎, 𝐲𝑜
) and using the variable substitution 𝜑 = 1 + 𝛽: 

𝜑(𝑗)
𝑜 =max 𝜑

subject to

𝛿𝐱𝑗 +
∑

𝑘∈
𝜋𝑘𝐩𝑘 ≤ 𝐱𝑜,

𝛿𝐲𝑗 +
∑

𝑘∈
𝜋𝑘𝐪𝑘 ≥ 𝜑𝐲𝑜,

(25)
𝛿 ∈ 𝛥, 𝝅 ≥ 𝟎, 𝜑 sign free.
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Note that both constraints (20d) and (20e) of program (20) are 
redundant in program (25) and do not need to be specified.

It is clear that, if (𝐱𝑜, 𝐲𝑜
)

∈ 𝑗
𝛥RS-TO, program (25) is feasible (with 

𝜑 = 1) and we have 𝜑(𝑗)
𝑜 ≥ 1. If (𝐱𝑜, 𝐲𝑜

)

∉ 𝑗
𝛥RS-TO, we can formally 

take 𝜑(𝑗)
𝑜 = −∞. Restating formula (21), we obtain the output radial 

efficiency of DMU (𝐱𝑜, 𝐲𝑜
) as the inverse value

𝜓𝑜 = 1∕max{𝜑(𝑗)
𝑜 ∣ 𝑗 ∈  }.

Alternatively, the output radial efficiency 𝜓𝑜 is equal to the inverse 
of the optimal value 𝜑𝑜 of the following linear program: 
𝜑𝑜 =max

∑

𝑗∈
𝜑𝑗

subject to

𝜆𝑗𝐱𝑗 +
∑

𝑘∈
𝜋𝑗𝑘𝐩𝑘 ≤ 𝜂𝑗𝐱𝑜, 𝑗 ∈  ,

𝜆𝑗𝐲𝑗 +
∑

𝑘∈
𝜋𝑗𝑘𝐪𝑘 ≥ 𝜑𝑗𝐲𝑜, 𝑗 ∈  ,

𝜆𝑗 − 𝜂𝑗 ∈ 𝛥, 𝑗 ∈  ,

𝟏⊤𝜼 = 1,
𝝀, 𝜼 ≥ 𝟎, 𝝅𝑗 ≥ 𝟎, 𝑗 ∈  , 𝝋 sign free,

(26)

which is derived from the linear program (23) by specifying the di-
rection vector 𝐠 =

(

𝟎, 𝐲𝑜
) and employing the variable substitution 

𝝋 = 𝜼 + 𝜷.

7. Illustrative application

We demonstrate the models and methodologies developed in this 
paper by an illustrative application to a sample of 126 UK universities.1

The data on costs and number of students was obtained from the 
publicly available website of the Higher Education Statistical Agency 
(HESA), collected in 2020/21. The data on publications was obtained 
from the Scopus database for 2020. (Papaioannou and Podinovski 
(2023) used a similar dataset but, in their study, the costs were dis-
aggregated by department.)

7.1. Inputs and outputs

We use a single input (total costs) and seven outputs. The latter 
include undergraduate (UG) and postgraduate (PG) students, which are 
accounted separately for the science, non-science (humanities and arts) 
and medical departments. Such treatment is in line with some literature 
on higher education (see, e.g., Thanassoulis, Kortelainen, Johnes, & 
Johnes, 2011) and takes into account that the costs of teaching students 
at the three groups of departments are generally different. The last 
output is the number of published papers as a measure of research 
activity of the universities.

A summary of the data is shown in Table  1.

7.2. Specification of production trade-offs

We specify seven production trade-offs which reflect the relative 
costs of teaching different types of students.

The first three trade-offs state that the teaching of one UG student 
does not incur more costs to the university than the teaching of one 
PG student (within the same department), because PG students are 
generally taught in smaller classes or require more individual super-
vision than UG students. This means that it should be technologically 
possible (if a need arises) to reduce the number of PG students at any 

1 This should not be viewed as a fully developed application but rather 
as a typical context which allows us to discuss the meaning of production 
trade-offs, their effect on efficiency discrimination and the evaluation of scale 
properties in the resulting nonconvex models.
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Table 1
Descriptive statistics for the data in the application.
 Inputs and outputs Mean Median Minimum Maximum Standard

deviation

 Input 1: Total costs (£1 million) 279.94 204.19 17.44 2,145.5 311.44 
 Output 1: UG medical students 390.4 0 0 2,875 712.38 
 Output 2: UG science students 5,828.49 5,257.5 200 51,040 5,011.48 
 Output 3: UG non-science students 7,955.44 6,687.5 50 69,400 6,649.34 
 Output 4: PG medical students 147.58 0 0 2,575 363.03 
 Output 5: PG science students 1,720.24 1,457.5 30 7,090 1,317.92 
 Output 6: PG non-science students 2,866.51 2,517.5 25 11,720 1,972.42 
 Output 7: Published papers 2,063.4 866.5 9 18,495 3,259.93 
 

 
 
 
 
 

department by one and, simultaneously, increase the number of UG 
students by one, assuming that the total costs and all other types of 
students remain unchanged.

In line with (2), we state the first three trade-offs as follows: 
𝐩1 = (0), 𝐪1 = (1,0,0,−1,0,0,0)⊤,
𝐩2 = (0), 𝐪2 = (0,1,0,0,−1,0,0)⊤,
𝐩3 = (0), 𝐪3 = (0,0,1,0,0,−1,0)⊤.

(27)

For example, the first trade-off in (27) means that any medical 
department would not require more costs if it were to replace one PG 
student by one UG student, while keeping the other outputs unchanged. 
The remaining two trade-offs make a similar statement for science and 
non-science departments.

The next two trade-offs state that the teaching of one UG student at 
a non-science department is not more costly to the university than the 
teaching of one UG student at either medical or science department. 
Therefore, no university should require extra costs (and no change 
to the other outputs is needed) if it were to increase the non-science 
students by one and simultaneously reduce the number of medical or 
science students by one. We state this as the two trade-offs: 
𝐩4 = (0), 𝐪4 = (−1,0,1,0,0,0,0)⊤,
𝐩5 = (0), 𝐪5 = (0,−1,1,0,0,0,0)⊤.

(28)

The final two trade-offs restate trade-offs (28) for PG students and 
have a similar meaning: 
𝐩6 = (0), 𝐪6 = (0,0,0,−1,0,1,0)⊤,
𝐩7 = (0), 𝐪7 = (0,0,0,0,−1,1,0)⊤.

(29)

We test the consistency of the stated trade-offs (𝐩𝑘,𝐪𝑘
)

, 𝑘 = 1,… ,7, 
by solving an appropriately specified CRS model (17). Its optimal value 
is equal to zero, which confirms that the specified seven trade-offs are 
consistent with the dataset.

Remark 7.  In line with our discussion in Section 1.1, it is worth 
highlighting that the above production trade-offs are not the same as 
the exact marginal rates of transformation between different types of 
students (which are usually unavailable) but are assumed conservative 
bounds on such rates that should be acceptable to all universities. For 
example, suppose that, depending on the university, instead of one PG 
student, non-science departments can use the same resources to teach 
between 1 and 5 UG students. Then no department can argue that the 
trade-off (𝐩1,𝐪1

) is technologically unrealistic. Because we do not know 
the exact range of marginal rates, we make a simplifying assumption 
that teaching a PG student generally requires at least the same resources 
as one UG student, and often more. If, in a particular application, this 
is felt to be an unjustified assumption, we can use a more relaxed trade-
off, for example, stating that, instead of 2 PG students, any department 
should be able to teach one UG student.

7.3. Computations and analysis

We evaluate the output radial efficiency of the universities in five 
different models, all of which are used in the analysis below.
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Table 2
Output radial efficiency in different models.
 Model Number of

efficient DMUs
Average
efficiency

Minimum
efficiency

Standard
deviation

 MNC
VRS 115 0.9883 0.7807 0.0429

 MNC
VRS−TO 95 0.9575 0.6155 0.0882

 MNC
CRS−TO 35 0.8371 0.4087 0.1573

 MNC
NIRS−TO 55 0.8887 0.4157 0.1412

 MNC
NDRS−TO 46 0.863 0.4087 0.1484

Model MNC
VRS is the standard FDH model which does not incorporate 

any of the trade-offs. Model MNC
VRS-TO is the FDH model in which we 

incorporate all seven tradeoffs (27)–(29). Models MNC
CRS-TO, MNC

NIRS-TO
and MNC

NDRS-TO are the CRS, NIRS and NDRS extensions of the model 
MNC

VRS-TO.
For computations using the models with trade-offs, we use their 

statement (26). Specifically, for each 𝑗 ∈  , the constraint 𝜆𝑗 − 𝜂𝑗 ∈ 𝛥
is changed to 𝜆𝑗 − 𝜂𝑗 = 0 in the case of VRS, is removed in the case of 
CRS and is changed to 𝜆𝑗 − 𝜂𝑗 ≤ 0 and 𝜆𝑗 − 𝜂𝑗 ≥ 0 in the cases on NIRS 
and NDRS, respectively.

Table  2 shows the results of computations using the five models. 
The first two rows show that the specification of trade-offs notice-
ably increases the discrimination of the FDH model. Such improve-
ment is achieved by the incorporation of additional information about 
the relative costs of different types of students stated as production 
trade-offs.

7.4. Scale characteristics

The notions of scale efficiency, MPSS and returns to scale were 
introduced to DEA by Banker (1984), Banker et al. (1984), and Banker 
and Thrall (1992). The extension of the notions of scale efficiency and 
MPSS to nonconvex technologies is unproblematic, but the notion of 
returns to scale requires a more careful treatment. We consider this 
below.

The scale efficiency of each university is obtained by dividing its 
efficiency in model MNC

CRS-TO by its efficiency in model MNC
VRS-TO. (If a 

university is not output radial efficient in model MNC
VRS-TO, then its scale 

efficiency coincides with the scale efficiency of its output projection on 
the boundary of the FDH technology with trade-offs.) Calculations show 
that the average scale efficiency across all 126 universities is equal to 
0.8719.

Table  2 shows that 35 universities are output radial efficient in the 
model MNC

CRS-TO. This means that, out of 95 universities that are output 
radial efficient in the model MNC

VRS-TO, only 35 are at MPSS and their 
scale efficiency is equal to 1. The remaining 95 − 35 = 60 universities 
are not at MPSS, and their scale efficiency is less than 1.

We can now use the approach originally developed by Färe et al. 
(1983, 1985) and further refined by Podinovski (2004a, 2004b), in 
order to investigate whether a particular university which is efficient 
in model MNC

VRS-TO but whose scale efficiency is less than 1, is smaller or 
larger than its MPSS. In line with the definition of global returns to scale 
of Podinovski (2004a), in the former case we say that the university 
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exhibits global increasing returns to scale (G-IRS) and would need to 
increase its scale of operations to achieve its MPSS. In the latter case, 
the university exhibits global decreasing returns to scale (G-DRS) and 
would need to reduce its scale of operations on the way to its MPSS. (As 
proved by Podinovski (2017), in any convex technology, the notion of 
global returns to scale is identical to the notion of local returns to scale 
defined by scale elasticities. In a nonconvex technology, the global and 
local characterizations are generally different.)

In line with Podinovski (2004a), a university exhibits G-IRS if its 
output radial efficiency in model MNC

NIRS-TO is strictly less than its 
efficiency in model MNC

NDRS-TO. The opposite sign between the two ef-
ficiency scores identifies universities that exhibit G-DRS. Computations 
show that, in our sample, 25 universities exhibit G-IRS and 35 exhibit 
G-DRS.

In summary, out of 95 universities that are output radial efficient in 
the model MNC

VRS-TO, 35 are at MPSS, 25 exhibit G-IRS and are smaller 
than their optimal size, and 35 exhibit G-DRS and are larger than their 
optimal size.

8. Conclusion

In this paper, we considered the incorporation of production trade-
offs in the FDH model of technology and its CRS, NIRS and NDRS 
variants. Such trade-offs are well-established in convex DEA models 
and represent simultaneous changes to the inputs and outputs that are 
regarded technologically possible at all DMUs in the technology.

The FDH model is often regarded as the ‘‘pure’’ model of technology 
in that any DMU whose efficiency is assessed is benchmarked only 
against the observed DMUs, and not against their convex combinations 
or any other hypothetical DMUs, as is the case in the standard VRS 
models. In this sense, the expansion of FDH technology by production 
trade-offs violates this ‘‘purity’’ and incorporates additional hypotheti-
cal DMUs obtained as modifications of observed DMUs by the specified 
trade-offs used in varying proportions. However, it is worth high-
lighting that the assumption that certain trade-offs are technologically 
feasible is unrelated to the assumption of convexity.

Furthermore, we would argue that production trade-offs represent 
our knowledge of the technology and there is no reason not to specify 
them as long as we are certain in their validity. As an example we 
can point at the illustrative application to universities discussed in 
Section 7. In this application, the trade-offs stated that the teaching 
of students on non-science degrees is generally not more expensive 
than teaching them on science and medical degrees, and that similarly 
teaching undergraduate students is not more costly than teaching post-
graduate students. In the authors’ view, such judgements are valid and 
can be confidently incorporated in the FDH model, the mathematical 
tools for which are developed in this paper.

We explore the FDH technology with production trade-offs in a 
single unifying development with its CRS, NIRS and NDRS variants. 
These variants are often used as reference technologies in the assess-
ment of scale efficiency, MPSS and returns to scale in the underlying 
FDH technology with trade-offs. We demonstrate the described use of 
all such technologies in the application in Section 7.

In order to provide a rigorous development of the FDH technology 
with production trade-offs and its CRS, NIRS and NDRS variants, we 
utilize the axiomatic approach in which the technology is defined by 
the minimum extrapolation principle applied to the stated axioms. The 
immediate operational statements of these technologies are generally 
nonlinear and utilize binary variables. We address this issue by de-
veloping equivalent linearized statements of these technologies. We 
show that different statements are useful for different purposes, such 
as theoretical exploration and computations.

We further explore the notion of consistent trade-offs which has 
previously been developed for convex VRS and CRS models. The trade-
offs are inconsistent if the model of technology incorporating them 
allows free or unlimited production of a nonzero vector of outputs. This 
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indicates that we made an error in the assessment of trade-offs and need 
to revisit their statements. In this paper, we develop exact and sufficient 
programming approaches to the testing of consistency of trade-offs.

We finally consider the models for assessment of efficiency of DMUs 
in the four nonconvex technologies with trade-offs, using the direc-
tional distance function approach and also the conventional input 
and output radial efficiency measures. It is known that the standard 
FDH models can be solved by computationally efficient enumeration 
algorithms—see, e.g., Tulkens (1993), Cherchye, Kuosmanen, and Post 
(2001) and Briec and Kerstens (2006). However, such approaches do 
not apply to the FDH model extended by production trade-offs and to its 
CRS, NIRS and NDRS variants. This means that the nonconvex models 
with trade-offs require a programming solution approach. However, 
it turns out that, even if we use a linearized statement of the FDH 
technology with trade-offs or its CRS, NIRS or NDRS analogues, the 
resulting programs become nonlinear. We further show that all these 
programs can be linearized.

In Section 7, we provide an application of the methodology and 
models developed in this paper to the assessment of efficiency of 
UK universities. In particular, we discuss the statement of several 
production trade-offs in the given context and further show that their 
specification significantly improves the discriminating power of the 
FDH model and its CRS, NIRS and NDRS analogues. We also discuss the 
evaluation of scale efficiency and returns to scale in the given setting.
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Appendix A. Axiomatic variations

In this section, we provide additional details for the discussion in 
Remark  1.

Podinovski (2004d) makes an assumption of feasibility of individual
production trade-offs (2) by stating the following axiom. (We adjust the 
original notation in line with the notation used in our paper.)
Axiom FITO (Feasibility of Individual Trade-Offs) If DMU (𝐱, 𝐲) ∈   then, 
for any 𝑘 ∈  and any 𝜋𝑘 ≥ 0, the DMU (𝐱′, 𝐲′) = (𝐱, 𝐲) +𝜋𝑘(𝐩𝑘,𝐪𝑘) ∈  , 
provided 𝐱 + 𝜋𝑘𝐩𝑘 ≥ 𝟎 and 𝐲 + 𝜋𝑘𝐪𝑘 ≥ 𝟎.

It may appear that the original Axiom FITO is equivalent to Ax-
iom FTO stated in Section 2.3 which allows simultaneous modifications 
of the DMU (𝐱, 𝐲) by a combination of all production trade-offs. This is 
because, apparently, the trade-offs in such combination can be used 
consecutively, one after another, resulting in the same DMU (𝐱′, 𝐲′) as 
defined by (3). This appearance is, however, generally incorrect.

Indeed, consider a DMU (𝐱, 𝐲) with three outputs stated by the 
vector 𝐲 = (0,0,5)⊤. (Note that output vectors with zero components 
are always present in a technology that is strongly disposable in the 
outputs.) Further consider the two trade-offs for the outputs stated by 
the vectors 𝐪1 = (−1,2,−1)⊤ and 𝐪2 = (2,−1,−1)⊤.

Neither of the trade-offs 𝐪1 nor 𝐪2 can individually be used to 
modify the DMU (𝐱, 𝐲) because doing so would result in a negative 
output 1 or 2. Therefore, in the described scenario, the original Axiom 
FITO does not generate any new DMUs. However, using these two 
trade-offs in combination with, e.g., 𝜋1 = 𝜋2 = 1, equal to 𝐪1 + 𝐪2 =
(1,1,−2)⊤, avoids creating negative outputs and can, by Axiom FTO, 
be used to modify the DMU (𝐱, 𝐲). More precisely, the resulting DMU 
(𝐱′, 𝐲′) has the output vector
𝐲′ = 𝐲 + 𝜋1𝐪1 + 𝜋2𝐪2 = (1,1,3)⊤.

This example shows that Axiom FTO is a stronger assumption than 
the original Axiom FITO. For the same set of production trade-offs (2), 
the former may generate DMUs (𝐱′, 𝐲′) that the latter cannot.
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In the proof of Theorems 1 and 2 of Podinovski (2004d), which es-
tablish an explicit statement of the CRS and VRS technologies expanded 
by production trade-offs, this ‘‘weakness’’ of Axiom FITO is compen-
sated by the additional axiom that the technology is a closed set. (This 
standard assumption should be true anyway and either required by an 
additional axiom or be a property following from the other axioms.) 
A further required assumption is that the technology includes at least 
one DMU (𝐱∗, 𝐲∗) whose all inputs and outputs are strictly positive. 
(A sufficient condition of this for the CRS or VRS technology is that 
every input and output is strictly positive in at least one observed DMU. 
In this case, the required DMU (𝐱∗, 𝐲∗) can be defined as the simple 
average of all observed DMUs.)

In axiomatic definitions, the goal is to define a technology by 
the weakest (and therefore most reliable) set of assumptions. In this 
sense, for defining technology  C

𝛥RS, the use of the weaker original 
Axiom FITO over the stronger Axiom FTO is preferable. However, the 
difference between the two axioms is almost imperceptible and using 
either axiom leads to the same statement of technology. In this paper 
we use the stronger Axiom FTO, which helps us to avoid mathematical 
complications arising from the use of Axiom FITO.

Appendix B. Proofs

Proof of Theorem  3.1.  Denote  ′ the technology (set) defined by the 
conditions in the braces on the right-hand side of (8). We need to prove 
that  ′ =  NC

𝛥RS-TO. Clearly, technology  ′ satisfies Axioms IO and SD. 
To prove that  ′ satisfies Axiom 𝛥RS, consider any DMU (𝐱, 𝐲) ∈  ′. 
By definition, (𝐱, 𝐲) satisfies conditions in (8) with some vectors 𝝀′, 𝝅′

and scalar 𝛿′ ∈ 𝛥. Consider any 𝛿 = 𝛿∗ ∈ 𝛥 in the statement of 
Axiom 𝛥RS. Then the DMU (𝛿∗𝐱, 𝛿∗𝐲) satisfies the conditions in (8) with 
𝝀 = 𝝀′, 𝝅 = 𝛿∗𝝅′ and scalar 𝛿 = 𝛿∗𝛿′ ∈ 𝛥. Therefore, (𝛿∗𝐱, 𝛿∗𝐲) ∈  ′. 
This implies that 𝛿∗ ′ ⊆  ′ for all 𝛿∗ ∈ 𝛥. Therefore, technology  ′

satisfies Axiom 𝛥RS.
To prove that  ′ satisfies Axiom FTO, consider any DMU (𝐱, 𝐲) ∈  ′, 

which satisfies conditions in (8) with some vectors 𝝀′, 𝝅′ and scalar 
𝛿′ ∈ 𝛥. Consider any vector 𝝅 = 𝝅∗ in the statement of Axiom FTO. 
Then the DMU (𝐱′, 𝐲′) defined by (3) satisfies conditions in (8) with 
𝝀 = 𝝀′, 𝝅 = 𝝅′ + 𝝅∗ and scalar 𝛿 = 𝛿′. Therefore, technology  ′ satisfies 
Axiom FTO. This implies that  NC

𝛥RS-TO ⊆  ′.
Conversely, consider any DMU (𝐱, 𝐲) ∈  ′ which satisfies all condi-

tions of (8) with some vectors 𝝀′, 𝝅′ and scalar 𝛿′. To be specific, let 
𝜆′1 = 1 (and all the other components of vector 𝝀′ be equal to zero). 
Then we have 
𝛿′𝐱1 +

∑

𝑘∈
𝜋′𝑘𝐩𝑘 ≤ 𝐱, (30a)

𝛿′𝐲1 +
∑

𝑘∈
𝜋′𝑘𝐪𝑘 ≥ 𝐲. (30b)

Because technology  NC
𝛥RS-TO satisfies Axioms IO and 𝛥RS, the DMU 

(𝛿′𝐱1, 𝛿′𝐲1) ∈  NC
𝛥RS-TO. It may appear that we can now use Axiom FTO to 

conclude that (𝛿′𝐱1+
∑

𝑘∈ 𝜋
′
𝑘𝐩𝑘, 𝛿

′𝐲1+
∑

𝑘∈ 𝜋
′
𝑘𝐪𝑘) ∈  NC

𝛥RS-TO. However, 
the input vector 𝛿′𝐱1 +

∑

𝑘∈ 𝜋
′
𝑘𝐩𝑘 may have negative components in 

which case Axiom FTO does not apply. (Note that, by (30b), we always 
have 𝛿′𝐲1 +

∑

𝑘∈ 𝜋
′
𝑘𝐪𝑘 ≥ 𝟎.) To overcome this possibility, we proceed 

in a different way.
Define the slack vector 𝐬 = 𝐱 − (𝛿′𝐱1 +

∑

𝑘∈ 𝜋
′
𝑘𝐩𝑘) ≥ 𝟎. By (30a), 

we have 𝐬 ≥ 𝟎. By Axiom SD, the DMU (𝛿′𝐱1 + 𝐬, 𝛿′𝐲1) ∈  NC
𝛥RS-TO. We 

now define the DMU (𝐱′, 𝐲′) = (𝛿′𝐱1 + 𝐬+
∑

𝑘∈ 𝜋
′
𝑘𝐩𝑘, 𝛿

′𝐲1 +
∑

𝑘∈ 𝜋
′
𝑘𝐪𝑘). 

Note that, by the definition of vector 𝐬 and by the inequality in (30b), 
the input and output vectors 𝐱′ and 𝐲′ of this DMU are nonnegative, as 
required by Axiom FTO. (We have 𝐱′ = 𝐱 ≥ 𝟎 and 𝐲′ ≥ 𝐲 ≥ 𝟎). Because 
 NC
𝛥RS-TO satisfies Axiom FTO, the DMU (𝐱′, 𝐲′) = (𝐱, 𝐲′) ∈  NC

𝛥RS-TO.
Taking into account (30b), by Axiom SD, the DMU (𝐱, 𝐲) ∈  NC

𝛥RS-TO. 
Therefore,  ′ ⊆  NC

𝛥RS-TO. Combining this with the opposite embedding 
proved above, we obtain  ′ =  NC . □
𝛥RS-TO
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Proof of Theorem  3.2.  Based on the statement (8), for each 𝑗′ ∈  , 
the hull 𝑗′

𝛥RS-TO is the subset of technology  NC
𝛥RS-TO corresponding to 

the vector 𝝀 in which 𝜆𝑗′ = 1 and 𝜆𝑗 = 0, 𝑗 ∈  ⧵ {𝑗′}. Therefore, 
⋃

𝑗∈ 𝑗
𝛥RS-TO ⊆  NC

𝛥RS-TO. Conversely, any DMU (𝐱, 𝐲) ∈  NC
𝛥RS-TO satisfies 

all conditions of the statement (8) with some vectors 𝝀, 𝝅 and scalar 𝛿. 
Because components of vector 𝝀 are binary and 𝟏⊤𝝀 = 1, there exists 
a 𝑗′ ∈   such that 𝜆𝑗′ = 1 and 𝜆𝑗 = 0, for all 𝑗 ∈  ⧵ {𝑗′}. Then the 
DMU (𝐱, 𝐲) satisfies all conditions of the statement (9) with the same 
vector 𝝅 and scalar 𝛿. Therefore, (𝐱, 𝐲) ∈ 𝑗′

𝛥RS-TO, which implies that 
 NC
𝛥RS-TO ⊆

⋃

𝑗∈ 𝑗
𝛥RS-TO. □

Proof of Theorem  3.3.  Consider any 𝑗 ∈  . Then the fact that 𝑗
𝛥RS-TO

is a polyhedral set follows from Podinovski et al. (2016). □

Proof of Theorem  3.4.  Let DMU (𝑥𝑜, 𝑦𝑜) ∈  C
VRS-TO. Taking into 

account (12), it suffices to prove that (𝑥𝑜, 𝑦𝑜) ∈ conv
(

 NC
VRS-TO

)

. Consider 
the program max{𝛿 ∣ (𝑥𝑜, (𝑦𝑜 − 1) + 𝛿) ∈  C

VRS-TO}, which can be restated 
as the following canonical linear program: 
𝛿∗ =max 𝛿

subject to
∑

𝑗∈
𝜆𝑗𝑥𝑗 +

∑

𝑘∈
𝜋𝑘𝑝𝑘 + 𝑠𝑥 = 𝑥𝑜,

∑

𝑗∈
𝜆𝑗𝑦𝑗 +

∑

𝑘∈
𝜋𝑘𝑞𝑘 − 𝑠𝑦 = 𝑦𝑜 − 1 + 𝛿,

𝟏⊤𝝀 = 1,
𝝀,𝝅 ≥ 𝟎, 𝑠𝑥, 𝑠𝑦, 𝛿 ≥ 0.

(31)

Because technology  C
VRS-TO does not allow unlimited production of 

output, the objective function of program (31) is bounded above. Then 
this program has a finite optimal solution (𝝀∗,𝝅∗, 𝑠∗𝑥, 𝑠

∗
𝑦 , 𝛿

∗) that is a 
basic feasible solution (BFS). Because the constraints of program (31) 
are stated as three equalities, this BFS has no more than three strictly 
positive components. One of them is 𝛿∗ ≥ 1. We now have two 
possibilities.

(1) Let 𝝅∗ = 𝟎. From (31), (𝑥𝑜, 𝑦𝑜) = (
∑

𝑗∈ 𝜆
∗
𝑗𝑥𝑗+𝑠

∗
𝑥,
∑

𝑗∈ 𝜆
∗
𝑗 𝑦𝑗−𝑠

∗
𝑦−

(𝛿∗ − 1)). Because 𝛿∗ − 1 ≥ 0, we have (𝑥𝑜, 𝑦𝑜) ∈  C
VRS = conv

(

 NC
VRS

)

⊆
conv

(

 NC
VRS-TO

)

.
(2) Let 𝝅∗ ≠ 𝟎. Then exactly one component 𝜆∗𝑗′  of vector 𝝀∗ is 

strictly positive and hence equal to 1, exactly one component 𝜋∗𝑘′  of 
vector 𝝅∗ is strictly positive, and both 𝑠∗𝑥 = 𝑠∗𝑦 = 0. Then, from (31), we 
have (𝑥𝑜, 𝑦𝑜) = (𝑥𝑗′ + 𝜋∗𝑘′𝑝𝑘′ , 𝑦𝑗′ + 𝜋

∗
𝑘′𝑞𝑘′ − (𝛿∗ − 1)). Because 𝛿∗ − 1 ≥ 0, 

we have (𝑥𝑜, 𝑦𝑜) ∈ 𝑗′
VRS-TO ⊆ conv

(

 NC
VRS-TO

)

. □

Proof of Theorem  3.5.  Let  and  denote the sets on the right-hand 
side of (10) and (13), respectively. By Theorem  3.2, we need to prove 
that  = .

Let (𝐱, 𝐲) ∈ . By (10), there exists a 𝑗′ ∈   such that (𝐱, 𝐲) ∈
𝑗′
𝛥RS-TO. Then it follows from (9) that there exist a scalar 𝛿 ∈ 𝛥 and a 

vector 𝝅 ∈ R𝐾+  such that
𝛿𝐱𝑗′ +

∑

𝑘∈
𝜋𝑘𝐩𝑘 ≤ 𝐱, 𝛿𝐲𝑗′ +

∑

𝑘∈
𝜋𝑘𝐪𝑘 ≥ 𝐲.

Define �̂�𝑗′ = 𝛿, �̂�𝑗′ = 𝝅, �̂�𝑗′ = 1, �̂�𝑗 = 0, �̂�𝑗 = 𝟎 and �̂�𝑗 = 0 for all 
𝑗 ∈  ∖{𝑗′}. Then, (𝐱, 𝐲) satisfies (13) with the vectors �̂�, �̂�𝑗 , 𝑗 ∈  , and 
�̂�. Therefore, (𝐱, 𝐲) ∈ , and  ⊆ .

Conversely, let (𝐱, 𝐲) ∈ . Then, (𝐱, 𝐲) satisfies (13) with some 
vectors 𝝀, 𝜼 and 𝝅𝑗 , 𝑗 ∈  . Because 𝜼 ≥ 𝟎 and 𝟏⊤𝜼 = 1, there exists 
at least one 𝑗′′ ∈   such that 0 < 𝜂𝑗′′ ≤ 1. This implies that
𝜆𝑗′′
𝜂𝑗′′

𝐱𝑗′′ +
∑

𝑘∈

𝜋𝑗′′𝑘
𝜂𝑗′′

𝐩𝑘 ≤ 𝐱,

𝜆𝑗′′
𝜂𝑗′′

𝐲𝑗′′ +
∑

𝑘∈

𝜋𝑗′′𝑘
𝜂𝑗′′

𝐩𝑘 ≥ 𝐲,

𝜆𝑗′′ − 1 ∈ 𝛥.
𝜂𝑗′′
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Define 𝛿 = 𝜆𝑗′′∕𝜂𝑗′′  and �̂� = 𝝅𝑗′′∕𝜂𝑗′′ . Then (𝐱, 𝐲) satisfies (9) with 𝛿
and �̂�. This implies (𝐱, 𝐲) ∈ , and thus  ⊆ . Therefore,  = . □

Proof of Theorem  4.1.  Because the cone technology  NC
CRS-TO is closed, 

the proof follows from statement (b) of Theorem 2 in Podinovski and 
Bouzdine-Chameeva (2013). □

Proof of Theorem  4.2.  If technology  NC
VRS-TO allows free or unlimited 

production of the vector 𝐲𝑜, then there exists a 𝑗 ∈   such that the 
hull 𝑗

VRS-TO allows free or, respectively, unlimited production of vector 
𝐲𝑜. The hull 𝑗

VRS-TO can be viewed as the convex VRS technology 
generated by the single observed DMU (𝐱𝑗 , 𝐲𝑗

) and expanded by the 
trade-offs (2). Then, as proved by Podinovski and Bouzdine-Chameeva 
(2013), the cone 𝑗

CRS-TO, and therefore technology  NC
CRS-TO as the 

union of all such cones, allow free and unlimited production of vector 
𝐲𝑜. The converse is proved in a similar way. It suffices to note that, 
as proved by Podinovski and Bouzdine-Chameeva (2013), if the CRS 
cone 𝑗

CRS-TO allows free and unlimited production of vector 𝐲𝑜, then 
the VRS hull 𝑗

VRS-TO and, therefore, technology  NC
VRS-TO as the union 

of all such hulls, allow its free or unlimited production. □

Proof of Theorem  4.3.  Suppose that any of the technologies  NC
VRS-TO, 

 NC
NIRS-TO or  NC

NDRS-TO allows free or unlimited production of a nonzero 
vector 𝐲𝑜. Because each of these technologies is a subset of technology 
 NC
CRS-TO, the latter technology also allows free or unlimited production 
of vector 𝐲𝑜. (By Theorem  4.1, it allows both free and unlimited 
production of this vector.) Then, by Theorem  4.2, technology  NC

VRS-TO
allows either free or unlimited production of vector 𝐲𝑜. Because tech-
nology  NC

VRS-TO is a subset of both technologies  NC
NIRS-TO and  NC

NDRS-TO, 
both of them allow either free or unlimited production of vector 𝐲𝑜, 
respectively.

In summary, if any of the four technologies allows free or unlimited 
production, then all of them allow free or unlimited production. There-
fore, if the trade-offs (2) are consistent or inconsistent in any of these 
technologies, they are consistent or, respectively, inconsistent in all of 
them. □

Proof of Theorem  5.1.  Let 𝛽∗, 𝝀∗, 𝜼∗ and 𝝅∗
𝑗 , 𝑗 ∈  , be a feasible 

solution to program (22). Define �̂� = 𝜼∗𝛽∗, �̂� = 𝝀∗, �̂� = 𝜼∗ and �̂�𝑗 = 𝝅∗
𝑗 , 

𝑗 ∈  . It is straightforward to verify that this defines a feasible solution 
to program (23). In particular, for each 𝑗 ∈  , the inequality (23e) 
is obtained from the inequality (22e) stated for 𝛽∗, by multiplying its 
both sides by 𝜂∗𝑗 ≥ 0 and substituting 𝜂∗𝑗 𝛽∗ by 𝛽𝑗 . Because 𝟏⊤𝜼∗ = 1, for 
this feasible solution, the objective function of program (23) is equal 
to 𝟏⊤�̂� =

(

𝟏⊤𝜼∗
)

𝛽∗ = 𝛽∗. Therefore, 𝛽𝑜 ≤ 𝛽𝑜.
Conversely, let �̂�, �̂�, �̂� and 𝝅𝑗 , 𝑗 ∈  , be a feasible solution to 

program (23). Consider any 𝑗′ ∈   such that �̂�𝑗′ > 0. (By (23f), at least 
one such 𝑗′ exists.) Stating constraints (23b) and (23c) for this solution 
and dividing their both sides by �̂�𝑗′ , we obtain 
�̂�𝑗′
�̂�𝑗′

𝐱𝑗 +
∑

𝑘∈

�̂�𝑗′𝑘
�̂�𝑗′

𝐩𝑘 ≤
�̂�𝑗′
�̂�𝑗′

𝐱𝑜 −
𝛽𝑗′
�̂�𝑗′

𝐠𝑥,

�̂�𝑗′
�̂�𝑗′

𝐲𝑗 +
∑

𝑘∈

�̂�𝑗′𝑘
�̂�𝑗′

𝐪𝑘 ≥
�̂�𝑗′
�̂�𝑗′

𝐲𝑜 +
𝛽𝑗′
�̂�𝑗′

𝐠𝑦.
(32)

Define 𝛽∗ = 𝛽𝑗′∕�̂�𝑗′ , 𝜆∗𝑗′ = �̂�𝑗′∕�̂�𝑗′ , 𝝅∗
𝑗′ = �̂�𝑗′∕�̂�𝑗′ , 𝜂∗𝑗′ = 1. Further 

define 𝜆∗𝑗 = 0, 𝝅∗
𝑗 = 𝟎 and 𝜂∗𝑗 = 0, for all 𝑗 ∈  ∖{𝑗′}. Then 𝛽∗, 𝝀∗, 𝜼∗

and 𝝅∗
𝑗 , 𝑗 ∈  , is a feasible solution to program (22).

Indeed, for 𝑗 = 𝑗′, the inequalities (22b) and (22c) follow from (32). 
For all 𝑗 ∈  ⧵{𝑗′}, the inequalities (22b) and (22c) are trivially satisfied 
because both their sides are equal to zero. The inequality (23d) stated 
for �̂�𝑗 and �̂�𝑗 implies the inequality (22d) stated for 𝜆∗𝑗  and 𝜂∗𝑗 , for all 
𝑗 ∈  . To prove (22e), divide both sides of the inequality (23e) stated 
for �̂�𝑗′  and 𝛽𝑗′  by �̂�𝑗′ > 0. For this feasible solution of program (22), its 
objective function is equal to 𝛽∗. Therefore, we have
𝛽 ≥ 𝛽∗ = 𝛽 ∕�̂� .
𝑜 𝑗′ 𝑗′
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We have shown that, for any 𝑗 = 𝑗′ such that �̂�𝑗 > 0, we have 
𝛽𝑜 ≥ 𝛽𝑗∕�̂�𝑗 . Multiply both sides of this inequality by �̂�𝑗 > 0 and sum 
them over 𝑗 such that �̂�𝑗 > 0. Because 𝟏⊤�̂� = 1, we have 

𝛽𝑜 ≥
∑

𝑗∈ ∶ �̂�𝑗>0
𝛽𝑗 . (33)

To complete the proof, we need to prove that �̂�𝑗 = 0 implies 𝛽𝑗 = 0. 
We can then remove the condition �̂�𝑗 > 0 under the summation in (33). 
Let �̂�𝑗 = 0. If 𝐠𝑥 ≠ 𝟎, then the equality 𝛽𝑗 = 0 follows from (23e). If 𝐠𝑥 =
𝟎, then 𝐠𝑦 ≠ 𝟎 and the terms on the right-hand side of inequalities (23b) 
and (23c) are equal to 𝟎 and 𝛽𝑗𝐠𝑦, respectively. According to the 
statement (13), we have (𝟎, 𝛽𝑗𝐠𝑦) ∈  NC

𝛥RS-TO. As assumed, technology 
 NC
𝛥RS-TO does not allow free production. This implies that 𝛽𝑗 = 0.
We have proved that the equality �̂�𝑗 = 0 implies 𝛽𝑗 = 0. Therefore, 

we can restate the inequality (33) as 𝛽𝑜 ≥
∑

𝑗∈ 𝛽𝑗 . Because the feasible 
solution �̂�, �̂�, �̂� and 𝝅𝑗 , 𝑗 ∈  , of program (23) is arbitrary, we 
have 𝛽𝑜 ≥ 𝛽𝑜. Combining this inequality with the opposite inequality 
established in the first part of the proof, we have 𝛽𝑜 = 𝛽𝑜. □

Appendix C. Redundancy of constraint (20e)

Recall that program (20) has a finite optimal value 𝛽𝑜 ≥ 0 if and 
only if (𝐱𝑜, 𝐲𝑜

)

∈ 𝑗
𝛥RS-TO. If 

(

𝐱𝑜, 𝐲𝑜
)

∉ 𝑗
𝛥RS-TO, program (20) is either 

infeasible or has a finite optimal value 𝛽𝑜 < 0.
For each 𝑗 ∈  , denote 𝑃 (𝑗)

𝑜  the program obtained from pro-
gram (20) by removing its constraint (20e). Let 𝛽(𝑗)𝑜  be its optimal 
value.

Theorem C.1.  If program (20) has a finite (nonnegative or negative) 
optimal value 𝛽(𝑗)𝑜 , then program 𝑃 (𝑗)

𝑜  has a finite optimal value 𝛽(𝑗)𝑜 , and 
𝛽(𝑗)𝑜 = 𝛽𝑜. If program (20) is infeasible, then either program 𝑃 (𝑗)

𝑜  has a finite 
optimal value 𝛽(𝑗)𝑜 < 0 or it is infeasible.

Proof of Theorem  C.1.  First note that the feasible region of pro-
gram (20) is a subset of the feasible region of program 𝑃 (𝑗)

𝑜 . Therefore, 
we always have 𝛽(𝑗)𝑜 ≤ 𝛽(𝑗)𝑜 . (This includes the case of infeasible 
programs for which the optimal value is taken equal to −∞.)

Assume that program (20) has a finite optimal value 𝛽(𝑗)𝑜 . Then the 
value 𝛽 = 𝛽(𝑗)𝑜  is achievable in program 𝑃 (𝑗)

𝑜 . Assume that program 
𝑃 (𝑗)
𝑜  has a feasible solution 𝛤 = (𝛿′,𝝅′, 𝛽′) such that 𝛽′ > 𝛽(𝑗)𝑜 . Because 

𝐲𝑜, 𝐠𝑦 ≥ 𝟎, we have 𝐲𝑜 + 𝛽′𝐠𝑦 ≥ 𝐲𝑜 + 𝛽
(𝑗)
𝑜 𝐠𝑦 ≥ 𝟎. Therefore, 𝛤  is feasible 

in program (20), which contradicts the assumption that 𝛽(𝑗)𝑜 ≥ 0 is its 
optimal value. Then 𝛽 ≤ 𝛽(𝑗)𝑜  in all feasible solutions of program 𝑃 (𝑗)

𝑜
and 𝛽(𝑗)𝑜  is its optimal value.

Let (𝐱𝑜, 𝐲𝑜
)

∉ 𝑗
𝛥RS-TO and let program (20) be infeasible. Assume 

that program 𝑃 (𝑗)
𝑜  has a feasible solution with 𝛽 ≥ 0. Because 𝐲𝑜, 𝐠𝑦 ≥ 𝟎, 

this solution also satisfies the inequality (20e). This contradicts the 
assumption that program (20e) is infeasible. Therefore, if program 𝑃 (𝑗)

𝑜
is feasible, then 𝛽 < 0 in any of its feasible solutions. Because in 
this case the objective function of program 𝑃 (𝑗)

𝑜  is bounded above, its 
optimal value 𝛽(𝑗)𝑜  is finite. Because 𝛽 < 0 for any feasible solution of 
program 𝑃 (𝑗)

𝑜 , we also have 𝛽(𝑗)𝑜 < 0. □

The above theorem shows that, if (𝐱𝑜, 𝐲𝑜
)

∈ 𝑗
𝛥RS-TO, then the 

optimal 𝛽(𝑗)𝑜  of program (20) remains unchanged if we remove con-
straint (20e) from the program. If (𝐱𝑜, 𝐲𝑜

)

∉ 𝑗
𝛥RS-TO, then program (20) 

and its relaxed variant without the constraint (20e) have negative 
optimal values or are infeasible. Neither case affects the maximum in 
formula (21), which is defined by the optimal values of programs (20e) 
for such 𝑗 that (𝐱𝑜, 𝐲𝑜

)

∈ 𝑗
𝛥RS-TO. (Because 

(

𝐱𝑜, 𝐲𝑜
)

∈  NC
𝛥RS-TO, at least 

one such 𝑗 exists.) We state this result as follows.

Corollary C.1.  The value 𝛽𝑜 calculated by formula (21) remains un-
changed if we solve all programs (20), 𝑗 ∈  , without the constraint (20e).

The following example illustrates Theorem  C.1 in the case when 
(

𝐱 , 𝐲
)

∉ 𝑗 .
𝑜 𝑜 𝛥RS-TO
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Fig. 3. An illustration to Example  5.

Fig. 4. An illustration to Example  6.

Example 5.  For simplicity, we consider the case of VRS and assume 
that no trade-offs are specified. We use the simplified notation 𝑗

VRS
for the respective hulls in this case.

Let (𝑥1, 𝑦1
)

= (4,2) be an observed DMU, where the first component 
is an input and the second is an output. Fig.  3 shows the hull 1

VRS
generated by DMU (𝑥1, 𝑦1

) without trade-offs as the dark shaded area 
in the nonnegative orthant. Consider the DMU (𝑥𝑜, 𝑦𝑜

)

= (2,1) and 
the directional vector (𝑔𝑥, 𝑔𝑦

)

= (1,1). It is straightforward to verify 
that program (20) stated for 𝑗 = 1 (assessing the directional distance 
function for DMU (𝑥𝑜, 𝑦𝑜

) in the hull 1
VRS) is infeasible. However, 

the optimal value of program (20) with constraint (20e) removed is 
equal to −2, projecting DMU (𝑥𝑜, 𝑦𝑜

) on the point (4,−1). If we change 
the directional vector (𝑔𝑥, 𝑔𝑦

) to (0,1), then both program (20) and its 
relaxation without the constraint (20e) become infeasible.

The next example shows that, unlike the output constraint (20e), 
the input nonnegativity constraint (20d) is generally not redundant and 
should not be removed from program (20).

Example 6.  Let (𝐱1, 𝐲1
) be an observed DMU with the input and 

output vectors 𝐱1 = (1,2)⊤ and 𝐲1 = (1). Also consider the trade-off 
that allows us to substitute one unit of input 2 by one unit of input 1, 
without altering the output: 𝐩 = (−1,1)⊤, 𝐪 = (0).

Fig.  4 shows the section of the hull 1
VRS-TO in the two input dimen-

sions as the shaded area contained in the nonnegative orthant. Consider 
assessing the efficiency of DMU (𝐱𝑜, 𝐲𝑜

)

, where 𝐱𝑜 = (6,2)⊤ and 𝐲𝑜 = (1), 
in the hull 1

VRS-TO, using the directional vector 
(

𝑔𝑥1 , 𝑔𝑥2 , 𝑔𝑦
)

= (1,4,0). 
The optimal value of program (20) is equal to 0.5, which correctly 
identifies the projection of DMU (𝐱𝑜, 𝐲𝑜

) represented by point 𝐴 in Fig. 
4. The same program from which constraint (20d) is removed has the 
optimal value equal to 1 and produces an incorrect target represented 
by point 𝐵. This projection has a negative input 2 and is outside the 
hull 1 .
VRS-TO
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