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Abstract
In regression studies, especially in general linear models, variable selection is key. It is
vital for statistical inferences. Recently, Chatterjee’s correlation has been introduced
as a novel measure of dependence. This criterion can measure the nonlinear or func-
tional relationship between two variables. On the other hand, the general linear model
does not necessarily require a linear relationship between the response variable and
covariates. This paper proposes a new algorithm that selects the appropriate variables
by sequential tests for the general linear model based on Chatterjee’s correlation. In
classical algorithms, changing the functional formof the general linearmodelmay lead
to the selection of different covariates. But, in the new algorithm, selected variables
aren’t affected by changing the functional form of the general linear model. Also,
a theorem discusses the algorithm’s properties, and simulations show the excellent
performances of the new proposed algorithm. Finally, we applied our method to real
data.

Keywords General Linear Model · Variable Selection · Chatterjee’s correlation ·
Sequential tests · New Algorithm

1 Introduction

Inmost regression studies, it is not appropriate to considermultiple linear relationships
between the response variable and covariates. For this reason, many researchers have
considered the following general linear model (see Bahari et al. (2021), Ben-Dor and
Banin (1995), Chatterjee (2021), Chatterjee (2024), Creemers et al. (2011)):

y = gT (x)β + ε, (1)
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Where, y is a response variable, x is a vector of covariates with dimension k, g(·) is
a vector function of dimension p, β is an unknown vector parameter of dimension
p, and ε is the measurement error with mean 0 and constant variance, σ 2. Moreover,
it is assumed that E(ε|x) = 0 and E(ε2|x) < ∞. If one applies the general linear
model, two essential problems will arise. The first problem is related to choosing the
functional form of the function g(·), and the second one is related to the variable
selection, the covariates should be included in the model.

In the special case for the multiple regression, the functional form of g(·) is known,
and it is only enough to select the suitable covariates in the model. There are many
methods in the literature to overcome this problem. For example, Efroymson (1960)
used the stepwise methods, especially the forward algorithm, for variable selection
in the model. Such algorithms for variable selection aim to find covariates that are
highly correlated with the response variable. For more details on the use of monotonic
associations, such as Pearson correlation, in variable selection, see also Guyon and
Elisseeff (2003), and Kutner et al. (2005). Indeed, the covariates remain in the model
with the highest partial correlation in comparison to others. In general, the functional
form of the general linear model is not necessarily linear. Therefore, using the classical
stepwise algorithms for variable selection in the general linear model may lead to an
inappropriate model. When the functional form of the general linear model is known,
using a stepwise algorithm can be helpful. But, in applications, it rarely happens. By
the way, it is reasonable to assume that the functional form of g(·) is unknown.

Some researchers have proposed statistical tests to check the goodness of fit of the
general linear model (see Hardle et al. (1998), Holm (1979), Kutner et al. (2005), Lin
and Han (2023), Montgomery et al. (2021), Pei et al. (2024), Shi et al. (2022), Thot-
tolil et al. (2023), Zhu and Chu (2005)). But, they didn’t study the variable selection
problem. The main reason that such researchers didn’t study the variable selection
problem is that Pearson correlation and other criteria, derived from it, measure the
strength of the linear relationship between the response variable and covariates. In the
general linear model, the response variable relationship with covariates can be defined
by numerous g(·) functions. This means that variable selection by classical algorithms
strongly depends on the g(·) function. Therefore, using Pearson criteria is not suitable
for checking dependency of them. This problem motivated us to find some way to
select effective covariates in the general linear model.

In recent years, Chatterjee (2021) has introduced a criterion that measures the
functional relationship of two variables. If we have two variables such as Y and X , the
functional relationship of X toY can bemeasured. Consider the paired case of a sample
by size n (n > 2). If there exist no ties in the observations, consider the sorted paired
of two samples based on the xi s as (x(1), y(1)), (x(2), y(2)), . . . , (x(n), y(n)), where
x(1) ≤ x(2) ≤ · · · ≤ x(n). Since there exist no ties in data, we can do it uniquely. Also,
we assume that ri be the rank of y(i), where it is the number j such that y( j) ≤ y(i).
Chatterjee (2021) proposed a new correlation criterion, now known as Chatterjee’s
correlation.

ζn(X ,Y ) = 1 − 3
∑n−1

i=1 |ri+1 − ri |
n2 − 1

. (2)
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In general case, if there exist ties in the observations, choose an increasing rearrange-
ment as above by breaking ties uniformly at random. ri s defined as before and define
the li s to be the number j such that y( j) ≥ y(i). Finally, the Chatterjee’s correlation
can generally be defined as follows:

ζn(X ,Y ) = 1 − n
∑n−1

i=1 |ri+1 − ri |
2

∑n
i=1 li (n − li )

. (3)

Note that, unlike the Pearson correlation, in the Chatterjee’s correlation, ζn(X ,Y ) �=
ζn(Y , X). Indeed, ζn(Y , X) measures the dependency rate of Y to X . Moreover,
ζn(X ,Y ) belongs to [0, 1]. It is equal to 0 if and only if X is independent of Y , and it is
equal to 1 if and only if there exists a real-valued and measurable function f such that
Y = f (X), almost surely. Some authors such as Azadkia and Chatterjee (2021), Shi
et al. (2022) and Lin and Han (2023) have improved some properties of the functional
correlation. Some other researchers, such as Fuchs and Wang (2024) have used the
properties of functional correlation for hierarchical variable clustering, and Thotto-
lil et al. (2023) have also used functional correlation for establishing the relationship
between HSIs and network density and to build a prediction model. Recently, Pei et al.
(2024) employed Chatterjee’s correlation in place of Pearson’s correlation, proposing
a new test for time series studies, while some of the properties and generalizations of
Chatterjee’s correlation have been reviewed by Chatterjee (2024).

In the next section, new algorithm has been introduced for variable selection in
the general linear model. In Sect. 3, the performances of the proposed algorithm have
been studied by simulation of some models. In Sect. 4, we will see applications of
our proposed algorithm for real data. In the final section, we have discussed some
applications and theoretical properties of our proposed algorithm.

2 Theorical approches

As noted in the last section, we face two key problems in fitting the general linear
model. To select the suitable covariates for the general linear model, we will use the
Chatterjee’s correlation. It measures the rate of dependency between covariates and
the response variable. Also, to select the appropriate covariates for the model, we
will introduce a new algorithm that selects the variables by the sequential tests. In
the new algorithm the sequentially rejective Bonferroni scheme which is introduced
by Holm (1979) is used. Using this scheme in similar algorithms is very common,
and is powerful than the simple Bonferroni scheme. By applying a similar sequential
test scheme in the new algorithm, we guarantee that the level of whole tests in the
algorithm is at most α. Moreover, this scheme is more powerful than the Bonferroni
scheme. On the other hand, after selecting appropriate covariates to overcome the
functional form of g(·), we can use different strategies to fit the final general linear
model. In this paper, we will use the Akaike Information Criterion (AIC) and the
Bayesian Information criterion (BIC) to determine the final general linear model in a
real data study. In statistical studies, it is common to consider a class of models and
select a model which is optimal among them. Because the class of functional form of
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models, especially the form of g(·) function in general linear model is very wide. The
following algorithm is proposed to select appropriate variables for the general linear
model.
New algorithm for variable selection in general linear model:

Step 1. Calculate the Chatterjee’s correlation between the response variable and
the covariates, i.e. ζn(X1,Y ), ζn(X2,Y ), · · · , ζn(Xk,Y ) based on the
observations.

Step 2. Consider the following hypotheses based on the biggest to the smallest
Chatterjee’s correlation:

H (1)
0 : ζ (k)

n = 0 vs H (1)
1 : ζ (k)

n �= 0,

H (2)
0 : ζ (k−1)

n = 0 vs H (2)
1 : ζ (k−1)

n �= 0,

·
·
·
H (k)
0 : ζ (1)

n = 0 vs H (k)
1 : ζ (1)

n �= 0,

where, ζ (1)
n ≤ ζ

(2)
n ≤ ... ≤ ζ

(k)
n , which are the ordered values of ζn(X1,Y ),

ζn(X2,Y ), · · · , ζn(Xk,Y ).
Step 3. Calculate the significant level of the hypotheses H ( j)

0 , j = 1, 2, ..., k as
follows:

p.value( j) = 2

⎛

⎝1 − P

⎛

⎝Z ≤ |ζ
(k− j+1)
n
√

2
5n

|
⎞

⎠

⎞

⎠ , j = 1, 2, · · · , k, (4)

where, Z follows N(0,1).
Step 4. Select the suitable covariates in the model as follows:

4.1: If p.value(1) > α
k , then no covariates enter the general linear model. If

not, enter the covariate into the general linear model which its Chatterjee’s
correlation matches to the ζ

(k)
n . Then, go to the next step.

4.2: If p.value(2) > α
k−1 , then stop. If not, enter the covariate into the general

linear model which its Chatterjee’s correlation matches to the ζ
(k−1)
n . Then,

go to the next step.

·
·
·

4.j: If p.value( j) > α
k− j+1 , then stop. If not, enter the covariate into the general

linearmodelwhich itsChatterjee’s correlationmatches to the ζ
(k− j+1)
n . Then,
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go to the next step.

·
·
·

4.k: If p.value(k) > α, then stop. If not, enter all the covariates into the general
linear model, and then stop.

In the above algorithm, ζn(X j ,Y )s, j = 1, 2, · · · , k, are calculated by using the
equation (2).We have presented a theoremwhich are used to calculate the significance
levels in Step 3. More details of Step 3 are given in the upcoming theorem. In this
paper, we have assumed that the response variable is continuous. If the response
variable wasn’t necessarily continuous, then Theorem 2.1 of Chatterjee (2021) and
also our proposed theorem will be valid yet, but the variance parameter of Normal
distribution will be different (see Chatterjee (2021)). In Step 4, the sequential tests are
applied to select appropriate variables, where the covariates with higher dependency
on the response variable eventuate higher amounts of p.value. Our proposed theorem
guarantee that the level of all combinations of tests in the proposed algorithm be at
most α. In the above algorithm, variable selection happens in Step 4. Indeed, the
following hypotheses are tested:

H ( j)
0 : ζ

(k− j+1)
n = 0 vs H ( j)

1 : ζ
(k− j+1)
n �= 0, j = 1, 2, · · · . (5)

The null hypothesis of the above equation, which is based on the ordered Chatterjee’s
correlation, implies that the certain covariate is independent of the response variable.
The following test statistics are used to test the above hypotheses:

Tj = ζ
(k− j+1)
n
√

2n
5

, j = 1, 2, · · · . (6)

The null hypotheses will be rejected if |Tj | > c j , where c j is the critical point. The
coming theorem describes the properties of our proposed algorithm.

Theorem 1 The test statistics of equation (6) under hypotheses (5) follow N (0, 1)
distribution for large sample sizes. Moreover, the level of any combinations of tests in
the proposed algorithm is at most α.

Proof It is the direct result of Theorem 2.1 of Chatterjee (2021) and Theorem 2 of
Holm (1979). The Normality comes from Theorem 2.1 of Chatterjee (2021) and the
level of tests comes from Theorem 2 of Holm (1979). Where, in Theorem 2 of Holm
(1979), one can use similar arguments by considering c j s = 1, j = 1, 2, · · · , k, and
conclude that the level of tests in the algorithm is at most α. ��

Theorem 1 provides that the level of any combinations of tests be at most α in
the algorithm. Furthermore, it gives a more powerful scheme in comparison to the
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traditional Bonferroni scheme. Also, in Theorem 1, a good approximation of the
test statistics distribution extremely depends on the large sample sizes. The following
flowchart, given in Fig. 1 is designed for variable selection based on the new algorithm.

After selecting the appropriate covariates, we can derive the optimal model in a
pre-assumed class of general linear models by the AIC or BIC criterion. To calculate
AIC and BIC in any cases, the following formulas are used:

AIC j = nln

(
SSE

n

)

+ 2p, j = 1, 2, · · · ,m,

BIC j = nln

(
SSE

n

)

+ pln(n), j = 1, 2, · · · ,m, (7)

where, p is the number of parameters in each model and m is the number of general
linearmodels in the assumed class.Moreover, g(·)s are known functions in the assumed
class. For more details about the model selection criteria, see also Montgomery et al.
(2021). In the next section, we just simulate the experiments to select the covariates.
However, in real data studies, it is necessary to consider a class of g(·) functions to
find the optimal general linear model.

3 Simulation study

In this section, we have considered some separate cases to study the properties of
our proposed algorithm to see its performances in different situations. However,
throughout the studies, we just thought about the variable selection part of the problem.

In continuation of this section, we will consider different functional cases of the
general linear model. In any study, we have repeated the simulation study 5000 times
with R software. In any study, we have supposed the level of whole tests in algorithm to
be α = 0.05, and to see the sensitivity of models under changing measurement errors,
we have considered different variances to ε. Moreover, to see the sample size effects
in studies, we have considered different sample sizes. Also, for a better understanding
of different cases of simulation studies, we have started with the simplest model, and
we have continued to study the most complex general linear models. In any studies,
the empirical Coverage Probability (CP) of accepting any covariates in the general
linear model has been calculated based on the proposed algorithm for different values
of σ 2 and n.

3.1 General linear model with no covariates in themodel

In most regression studies, maybe, there is no relationship between the response vari-
able and the covariates. For this reason, we consider a case in which there are no
covariates in the model. Therefore, consider the Model (1), where, g(x) = 1, β = 1
and ε ∼ N (0, σ 2) with known values of σ 2. Furthermore, suppose we have three
covariates in hand that are candidates to enter into the model where X1 ∼ N (0, 1),
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Fig. 1 Variable selection flowchart for glm based on the new algorithm
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Table 1 Empirical coverage
probability of entering any
covariates into the general linear
model when there are no
covariates in the model with
three candidate covariates for
different values of σ 2 and n
based on the 5000 repetitions of
the Monte Carlo algorithm

n σ 2 X1 X2 X3

100 0.01 0.0156 0.0158 0.0122

0.10 0.0116 0.0146 0.0154

0.25 0.0152 0.0156 0.0134

0.50 0.0134 0.0160 0.0176

1.00 0.0156 0.0170 0.0152

200 0.01 0.0146 0.0140 0.0166

0.10 0.0158 0.0164 0.0176

0.25 0.0172 0.0150 0.0168

0.50 0.0178 0.0158 0.0128

1.00 0.0162 0.0160 0.0196

300 0.01 0.0138 0.0142 0.0180

0.10 0.0152 0.0170 0.0174

0.25 0.0134 0.0150 0.0170

0.50 0.0162 0.0156 0.0152

1.00 0.0154 0.0184 0.0162

X2 ∼ U (0, 3) and X3 ∼ N (0, 1). In this case, Model (1) is equivalent to:

y = 1 + ε, (8)

where is the simplest general linear model with no covariates. The results of this study
are given in Table 1 for various sample sizes and different values of σ 2.

From Table 1, one can conclude that the chance of entering any covariate into the
model is very low. In this case, we can say that no covariates are inserted into the
model as we expected, and the probability of inserting all covariates into the model
is approximately 0.05. This probability comes from the assumed level for the tests in
the algorithm, i.e. α = 0.05. In this study, the effect of sample sizes and measurement
errors are not very obvious because there are no covariates in the general linear model.
The effects of n and σ 2 will be seenmore obviously in the next studies by the existence
of covariates in the general linear model. However, the good performance of our
proposed algorithm is obvious and the empirical coverage probability of entering the
candidate covariates into the model is very low.

3.2 Multiple linear model with two significant covariates in themodel

To see the good performance of our proposed algorithm in the multiple regression
model, which is the special case of the general linear model, Model (1) is simulated.
Where in Model (1), g(x) = (x1, x2), β = (1, 1) and ε ∼ N (0, σ 2) where σ 2 is a
known value. Furthermore, X1 ∼ N (0, 1), X2 ∼ U (0, 3), and the variable X3 which
is not in the model, follows from N (0, 1). In this case, Model (1) is equivalent to:

y = x1 + x2 + ε, (9)
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Table 2 Empirical coverage
probability of entering any
covariates into the general linear
model when there are two
covariates in the model with
three candidate covariates for
different values of σ 2 and n
based on the 5000 repetitions of
the Monte Carlo algorithm

n σ 2 X1 X2 X3

100 0.01 0.9954 0.9628 0.0490

0.10 0.9908 0.9382 0.0430

0.25 0.9790 0.8862 0.0404

0.50 0.9366 0.7950 0.0426

1.00 0.7938 0.5916 0.0322

200 0.01 1.0000 0.9998 0.0464

0.10 1.0000 0.9990 0.0470

0.25 0.9998 0.9940 0.0448

0.50 0.9986 0.9782 0.0496

1.00 0.9782 0.9000 0.0422

300 0.01 1.0000 1.0000 0.0496

0.10 1.0000 1.0000 0.0520

0.25 1.0000 0.9996 0.0476

0.50 1.0000 0.9982 0.0450

1.00 0.9986 0.9750 0.0518

where is the multiple regression model with two covariates. The following table shows
the results of simulation studies under the mentioned assumptions.

From Table 2, as we expected, the probability of entering X1 and X2 into the
general linear model is very high, and the probability of entering X3 into the model is
very low. Moreover, by increasing the variance of measurement errors, the chance of
entering X1 and X2 into the model has decreased. On the other hand, by increasing
the sample sizes, the chance of entering X1 and X2 into the general linear model has
increased. However, the empirical coverage probability of entering X3 into the model
is not affected much by changing the values of σ 2 and n. This comes from the fact that
X3 is not in the assumed model. The results of this study show the good performance
of our proposed algorithm.

3.3 General linear model with two significant covariates in themodel

In this section,we simulate the general linearmodel by two covariates in themodel, and
in addition, we assume that there exist 4 extra covariates where these extra covariates
don’t affect the model. Therefore, we simulate Model (1) where in Model (1) g(x) =
(x1, x22 ),β = (1, 1) and ε ∼ N (0, σ 2)where σ 2 is a known value. Also, X1 ∼ U (0, 3)
and X2 ∼ N (0, 1). Moreover, we assume that the extra covariates in this study,
X3, X4, X5 and X6 follow from ∼ N (0, 1). In this case, Model (1) is equivalent to:

y = x1 + x22 + ε. (10)

This general linear model is equivalent to a polynomial regression model. The results
of this study are given in Table 3 by the mentioned assumptions.
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Table 3 Empirical coverage probability of entering any covariates into the general linear model when there
are two covariates in the model with six candidate covariates for different values of σ 2 and n based on the
5000 repetitions of the Monte Carlo algorithm

n σ 2 X1 X2 X3 X4 X5 X6

100 0.01 0.9822 0.9806 0.0128 0.0122 0.0090 0.0101

0.10 0.9822 0.9812 0.0114 0.0134 0.0116 0.0130

0.25 0.9684 0.9738 0.0098 0.0116 0.0122 0.0112

0.50 0.9018 0.9446 0.0104 0.0106 0.0106 0.0108

1.00 0.4690 0.7796 0.0120 0.0104 0.0074 0.0088

200 0.01 1.0000 0.9996 0.0112 0.0124 0.0098 0.0114

0.10 1.0000 1.0000 0.0108 0.0128 0.0140 0.0114

0.25 0.9994 1.0000 0.0146 0.0116 0.0104 0.0120

0.50 0.9968 0.9998 0.0132 0.0106 0.0114 0.0114

1.00 0.8142 0.9838 0.0124 0.0118 0.0126 0.0122

300 0.01 1.0000 1.0000 0.0120 0.0132 0.0146 0.0134

0.10 1.0000 1.0000 0.0104 0.0130 0.0130 0.0108

0.25 1.0000 1.0000 0.0128 0.0104 0.0152 0.0110

0.50 0.9996 1.0000 0.0126 0.0118 0.0134 0.0100

1.00 0.9436 0.9998 0.0112 0.0088 0.0120 0.0112

Similar conclusions to the previous study are obtained in this study. Where, the
chance of entering existing covariates into the assumed model is very high and the
chance of the covariates that are not in the assumed model is very low for entering
into the model. Also, by increasing the number of candidate covariates in comparison
to the last study, the effects of sample sizes and measurement errors are very obvious.
Figures2 and 3 show the empirical coverage probability of entering X1 and X2 into
the general linear model under changing σ 2 and n, respectively.

Figure 2 shows the decreasing behavior of empirical coverage probability under
increasing σ 2, and Fig. 3 shows the increasing behavior of empirical coverage proba-
bility under increasing sample sizes. The results of this study show good performances
of our proposed algorithm.

3.4 More complex general linear model with three significant covariates in the
model

In This case, we consider a more complex general linear model with a large number of
candidate covariates. Inmodel (1), suppose g(x) = (x1, x32 , e

x3),β = (2.75, 2.5, 1.5),
ε ∼ N (0, σ 2) with known values of σ 2, X1 ∼ U (−3, 3), X2 ∼ N (0, 1), and X3 ∼
Exp(1). Also, there exist some covariates that do not have a rule in the model where
X4, X5, X6 ∼ N (0, 1), X7 ∼ U (−1, 1), X8 ∼ N (1, 1), X9 ∼ Exp(0.5), and X10 ∼
Beta(2, 2). In this case, Model (1) is equivalent to:

y = 2.75x1 + 2.5x32 + 1.5ex3 + ε. (11)
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Fig. 2 Empirical coverage probability of existing covariates in the general linear model for entering into
the model for different values of σ 2 where the dashed curve shows the CP of X1 and the dotted curve shows
the CP of X2

Fig. 3 Empirical Coverage probability of existing covariates in the general linear model for entering into
the model for different values of n where the dashed curve shows the CP of X1 and the dotted curve shows
the CP of X2
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This model is more complex than the previously studied model, and there are 10
candidate covariates to enter into the model. The results of this study are given in
Table 4.

From Table 4, the sample size effects are very obvious. By increasing the sample
sizes from 100 to 300, the changes in the empirical coverage probability criterion are
meaningful. This comes from the fact that in Theorem 2.1 of Chatterjee (2021) and
also, in our proposed theorem, the distribution of tests statistics depend on the sample
sizes. However, the results are very satisfactory. Where, the existing covariate in the
general linear model enter into the model by the high probability. Also, the covariates
that don’t have a rule in the model are rejected by the high probability.

3.5 Variable selection with high-dimensional covariates

In this subsection, we examine a model similar to the one used in the previous study,
which includes three covariates. To investigate the impact of the number of candidate
covariates (k) on variable selection using the proposed algorithm, we extend the model
to include 20 covariates. In model (1), it is assumed that g(x) = (x1, x22 + e(1−x3)),
β = (2, 0.5), ε ∼ N (0, σ 2) with known values of σ 2. Additionally, we simulate the
covariates from the following distributions:

X1, X2, X3, X4, X5 ∼ N (1, 5),

X6, X7, X8, X9, X10 ∼ Exp(0.5),

X11, X12, X13, X14, X15 ∼ U (−1, 1),

X16, X17, X18, X19, X20 ∼ Gamma(5, 1).

In this case, Model (1) is equivalent to:

y = 2x1 + 0.5(x22 + e(1−x3)) + ε. (12)

In equation (12), the general linear model includes 3 covariates and is characterized by
2 parameters. This model allows us to evaluate how the proposed algorithm performs
in a higher-dimensional setting and assess its sensitivity to the number of candidate
predictors. The results of this study are presented in Table 5 for various values of n
and σ 2.

The results of this study align closely with those of the previous study. The effect
of sample size on variable selection remains evident. More importantly, increasing
the number of covariates does not significantly impact the results. Additionally, a
key finding is that covariates which do not contribute to the model (i.e., irrelevant
variables) are rejected with high probability across different values of k. Moreover,
in this study as well as in previous studies, the rejection of irrelevant covariates with
high probability is independent of both the number of covariates and the sample size.
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4 Real data studies

In this section, we analyze two real datasets. In the first study, we apply our method
to the“Academic Achievements” dataset, and in the second study, we apply it to
the“Wavelength Reflection”dataset. For both studies, we begin by selecting the appro-
priate covariates for the model using the proposed algorithm. Next, we fit several
general linear models and identify the optimal model based on the BIC. The final
model is selected using the BIC criterion, as discussed in Sect. 2.

4.1 Study1: academic achievements

Consider the data set,“Effects of Students Background on Academic Achieve-
ments”used by the UCLA group to introduce structural equation modeling. This
data set and more details about the data are given on their site by address “https://
stats.oarc.ucla.edu/r/seminars/rsem/”. Moreover, the direct link to access to the data
is “https://stats.idre.ucla.edu/wp-content/uploads/2021/02/worland5.csv”. This data
set contains observations of 9 continuous variables with no ties. Also, the sample size
is n = 500. The variables are motiv(Y ):Motivation; harm(X1): Harmony; stabi(X2):
Stability; ppsych(X3):Negative Parental Psychology; ses(X4): Socioeconomic Sta-
tus; verbal(X5): Verbal IQ; read(X6): Reading; arith(X7): Arithmetic and spell(X8):
Spelling. As determined in the definition of variables, we consider the motiv vari-
able as the response variable, and the other variables are considered as the candidate
covariates that can enter into the general linear model.

In the first step, the appropriate covariates are selected by the proposed algorithm
in level α = 0.05. The significant levels of any covariates for entering into the model
are 0.0000, 5.1026 × 10−10, 0.2672, 0.8984, 0.0469, 1.4647 × 10−8, 0.0000 and
7.2875×10−13, respectively. Therefore, by the proposed algorithm, one can conclude
that X1, X2, X6, X7, and X8 are related to the response variable but the variables X3,
X4, and X5 are not related to the response variable. We assume the following models
as the assumed class and then, we choose the final optimal general linear model in this
class.

model 1: y = β1x1 + β2x2 + β3x6 + β4x7 + β5x8.
model 2: y = β0 + β1x1 + β2x2 + β3x6 + β4x7 + β5x8.
model 3: y = β0 + β1(x1 + x2) + β2(x6 + x7 + x8).
model 4: y = β1(x1 + x2) + β2(x6 + x7 + x8).
model 5: y = β1(x1 + x2)2 + β2(x6 + x7 + x8)2.
model 6: y = β1(x1 + x2 + x6 + x7 + x8).
model 7: y = β0 + β1(x1 + x2 + x6 + x7 + x8).
model 8: y = β1e(x1+x2) + β2(x1 + x2 + x6 + x7 + x8).
model 9: y = β1

x1+x2
x6+x7+x8

.
model 10: y = β1(x1 + x2) × (x6 + x7 + x8).

To select the final general linear model, we use the BIC criterion. The BIC of dif-
ferent models are 1719.308, 1725.522, 1762.158, 1768.587, 2309.688, 1842.385,
1848.600, 1848.456, 2307.274 and 2306.358, respectively. Based on the BIC crite-
rion, one can choose the first model as the final model among the assumed class of the
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general linear models. Therefore, the final model for data will be as follows:

y = 0.5256x1 + 0.1518x2 − 0.1080x6 + 0.2269x7 + 0.2264x8. (13)

In the final model, the covariates X3, X4 and X5 are omitted from inferences by
the proposed algorithm.

4.2 Study 2: wavelength reflection

In agriculture,waves are sent into the soil tomeasure the concentration of soilminerals.
In this study, we used data collected from Ardabil County, Iran, by researchers at the
University of Mohaghegh Ardabili. Waves with wavelengths ranging from 580 to 680
nm, at intervals of 5 nm, were transmitted to the soil at various locations in Ardabil.
The reflection rates of these waves were then recorded. Additionally, the pH of the
soil was measured at each location.

The objective of this study is to construct a general linear model for soil pH (the
response variable) using the reflection rates of 21 different wavelengths as covari-
ates. However, preliminary analysis revealed that the covariates are highly correlated,
leading to a multicollinearity issue. To address this problem, we applied Principal
Component Regression (PCR), which avoids multicollinearity by transforming the
covariates into uncorrelated principal components.

In the initial analysis, we observed that the cumulative proportion of variance
explained by the principal components reached approximately 1 by the 9th compo-
nent. Therefore, we used the first 9 principal components to transform the covariates.
As a result, the final dataset consists of one response variable (soil pH) and 9 rotated
covariates derived from the original 21 wavelength reflection rates.

By applying our proposed algorithm at level of α = 0.05, the p-values for entering
covariates into the model were 0.0132, 0.1175, 0.9460, 0.1479, 0.8656, 0.04868,
0.07560, 0.8062, and 0.6784, respectively. Therefore, by our algorithm, no covariates
were included in the final model. This result aligns with the findings of Ben-Dor
and Banin (1995), who demonstrated that soil pH does not emit or reflect specific
wavelengths. This results suggesting that wavelength-based measurements may not be
suitable for predicting soil pH directly. However, when we reduce the confidence level
of the tests in the algorithm to88%(α = 0.12), thefirst transformed covariate enters the
model. This result suggests that, at a lower confidence level, the relationship between
the first principal component (pc1) and soil pH becomes statistically significant. We
assume the following models as the assumed class and then, we choose the final
optimal general linear model in this class.

model 1: y = β0 + β1 pc1.
model 2: y = β1 pc1.
model 3: y = β0 + β1 pc21.
model 4: y = β1 pc21.
model 5: y = β1 pc31.
model 6: y = β0 + β1 pc1 + β2 pc21.
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model 7: y = β1 pc1 + β2 pc21.
model 8: y = β1 pc1 + β2 pc21 + β3 pc31.
model 9: y = β0 + β1epc1 .
model 10: y = eβ0+β1 pc1 .

The BIC of different models are −134.3546, −17.7761, −147.3464, 84.6675,
131.6210, −152.0495, −92.7720, −141.5162, −112.2814, and −336.8436, respec-
tively. Based on the BIC criterion, one can choose the 10th model as the final model
among the assumed class of the general linear models. Therefore, the final model for
data will be as follows:

y = e1.1817−0.1160pc1 . (14)

5 Discussion

In our studies, we have considered that all the variables are continuous and there are no
ties among the observations in any variables. However, one can consider some more
complex cases. In general, The empirical distribution of ζn(·, ·) is Normal yet, but its
variance is different. Considering the more complex cases may be our next study.

In real data study, we first choose the appropriate covariates based on the proposed
algorithm. Then, we picked the best model among the assumed class of general linear
models. It is necessary to emphasize that selected covariates are unique by the algo-
rithm. But, the fitted model may changes by changing the class of candidate general
linear models and used criteria. Therefore, fitting an appropriate general linear model
depends on the experiences of researchers about the experiments and data.

Remark that we used the empirical distribution of Chatterjee’s correlation to select
the appropriate covariates. This criterion extremely depends on the sample sizes,
especially when the number of candidate covariates is high. Therefore, in using our
proposed algorithm, determining the appropriate sample size is essential. However,
in simulation studies, we have observed that irrelevant covariates associated with the
response variable are removed from the model with a high probability, even in cases
with low sample sizes.

Data Availability Dataset 1 is directly linked within the manuscript text. Dataset 2 is available via the
following Google Drive link: https://drive.google.com/file/d/13IbTXtbvRtO76nBmubZzmBIz3NLq3afg/
view.
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