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Development of efficient analytical techniques is required for effective interpretation of biological data to take
novel hypotheses and finding the critical predictive patterns. Machine Learning algorithms provide a novel
opportunity for development of low-cost and practical solutions in biology. In this study, we proposed a new
integrated analytical approach using supervised machine learning algorithms and microsatellites data of
worldwide vitis populations. A total of 1378 wild (V. vinifera spp. sylvestris) and cultivated (V. vinifera spp. sativa)
accessions of grapevine were investigated using 20 microsatellite markers. Data cleaning, feature selection, and
supervised machine learning classification models vis, Naive Bayes, Support Vector Machine (SVM) and Tree
Induction methods were implied to find most indicative and diagnostic alleles to represent wild/cultivated and
originated geography of each population. Our combined approaches showed microsatellite markers with the
highest differentiating capacity and proved efficiency for our pipeline of classification and prediction of vitis
accessions. Moreover, our study proposed the best combination of markers for better distinguishing of pop-

ulations, which can be exploited in future germplasm conservation and breeding programs.

1. Introduction

Over the last decade, advances in molecular biology technologies
have led to tremendous growth in biological data. Among biology
technologies, a wide range of molecular techniques has been developed
for genetic diversity and germplasm characterization of organisms
[1-5]. These data present the raw material needed to gain insights into
the hidden layer of molecular diversity data. However, the potential of
these data can only be realized through next-level analyses [6]. On top of
that, the development of new analytical models for interpretation and
understanding of these biological processes to take new perspectives,
generate novel hypotheses, and find critical predictive patterns. Among
different modeling approaches, Machine Learning algorithms provide
numerous opportunities for development of low-cost and practical so-
lutions [7-9]. Machine learning is an area of artificial intelligence that is
integrated with statistical and computational methods to automatically
learn from data. The learning process itself refers to knowledge
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discovery that translate the features in the training data into pattern,
and clustering/prediction of the labels [10,11].

Machine learning is divided into two overarching categories viz.,
supervised and unsupervised learning methods [12]. Unsupervised
machine learning methods are used when the labels on the input data
are unknown; these methods learn only from patterns in the features of
the input data. In supervised methods, on the other hand, labeled fea-
tures are trained to predict the class labels based on training examples.
Among a large number of supervised models reported, decision trees,
naive Bayes, and support vector machines (SVMs) are simple and
effective methods with a broad range of application in biology [8,9,
12-15].

SVM is the most popular supervised learning algorithms, which uses
kernel function to project data into a higher dimensional space to clas-
sify data. In other words, SVM is based on the concept of decision planes
that define decision boundaries between different class members [12,
15]. Decision trees are predictive models that are performed under
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uncertain conditions in a recursive manner. Decision trees are made of a
root, internal, or non-leaf node (test on attributes) and leaf nodes (label
class) [12,14]. The Naive Bayesian classifier is expanded based on
Bayes’ theorem with features independence hypothesis. Despite easy to
implement, Naive-Bayes classifier is known as highly sophisticated
classifiers [7,16].

Grapevine has had a noble gift of nature to the mankind and cultural
importance for the Iranians through millennia. Grapevine, as the most
widely grown fruit plants in the world, is recognized as the earliest
domesticated fruit plants in the world nowadays [17-21]. Vitis, is the
commonly cultivated grapevine in the worldwide, ranges from Central
Asia to the Mediterranean Basin [21]. Within the genus Vitis, V. vinifera
is the primary species used in the viticulture for the large-scale pro-
duction of table fruits, raisins, juice, and wine [18]. Two subspecies
sylvestris and sativa have been described for V. vinifera, which includes
the wild populations and cultivated/domesticated varieties, respectively
[22]. Grape domestication occurred in the upland regions of Eastern
Turkey and in the northwest of Iran about 6000-8000 years ago [23,24].
From there that domesticated grapevines spread to Southern Balkans
and East Mediterranean Basin. During the first millennium, BCE
grapevine appeared in Sicily, Western and Central Europe. Then,
grapevine cultivation reached Central and South East Asia (This et al.,
2006; [22]). Despite the many studies of genetic diversity and research
on grapevine domestication history and its spread, but this proposition
has remained mysterious, until now. Recently, a study with molecular
mechanism in 3525 cultivated and wild accessions suggested that
grapevine domestication occurred concurrently about 11,000 years ago
in Western Asia and the Caucasus to yield table and wine grapevines
[21].

The cultivated grape V. vinifera subsp. sativa has had a great eco-
nomic impact all over the world. However, because of human popula-
tion growth, destruction of habitats, and natural phenomena such as
floods, fire and pathogen dispersal, the wild grape V. vinifera subsp.
sylvestris, is in danger of extinction currently. Hence, there is urgent need
to characterize and conserve grape germplasm for future programs. So
far various molecular markers, such as SSR [22,25-36], SNP [20,22,28,
37-411, AFLP [42], Retrotransposon [43,44] and ISSR [31] have been
used to characterize different grapevine accessions. However, because of
considerable genetic diversity and synonyms (variety of names for the
same genotype) or homonyms (same name for different genotypes) in
the clonal propagated grapevines, characterizations of the accessions are
still challenge. Although molecular markers especially SSR and SNP are
effective methods to characterization and classifying the worldwide
grapevine germplasm. Nevertheless, machine learning (ML) approaches,
which efficiently facilitate pattern recognition and classification leading
to prediction by creating models using existing data. Therefore the
integration of molecular markers with machine learning approaches
could help to classification and prediction by creating models using
existing data of grapevine for future diversity and conservation
programs.

The data produced in Riaz et al. [30] provides valuable information
of microsatellites profiles for Caucasus, Central Asia, and the Mediter-
ranean basin vitis collections. In order to determine the most indicative
markers for distinguishing among diverse vitis populations and sub-
species, we assessed machine learning based modeling approach on
these data sets. The main objective of this study was to evaluate feasi-
bility and efficiency of supervised machine learning algorithms in clas-
sification and prediction of worldwide vitis populations based on
microsatellites data sets. We show that the integrated pipeline used in
this study is highly reliable in classifying and predicting world grapevine
accessions.
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2. Materials and methods
2.1. Datasets

A total of 1378 wild (V. vinifera spp. sylvestris) and cultivated
(V. vinifera spp. sativa) accessions of grapevine across different regions of
central Mediterranean and Central basin were subjected to 20 micro-
satellite markers (namely; VMC1b1l1l, VMC4f3.1, VVIb01l, VVIh54,
VVInl6, VVIn73, VVIp31, VVIp60, VVIq52, VVIv37, VVIv67, VVMD21,
VVMD24, VVMD25, VVMD27, VVMD28, VVMD32, VVMDS5, VVMD7,
VVS2) analysis [30]. The datasets belonged to nine countries including
Turkmenistan, Pakistan, Georgia, Armenia, Azerbaijan, Croatia, Spain,
France and Italy. Table 1 provides the details of accessions that were
included in this study.

2.2. Data processing

In data cleaning step, at first, allelic profiles for all accessions were
converted into yes/no binomial variables, assigning ‘yes’ for the present
allele and ‘no’ for all other absent alleles at each locus. Next, correlated
(correlation coefficient higher than 0.95), and useless attributes (above
and below percent of examples) were removed from initial data sets.
Hereafter the processed data sets were called Pdb (Processed database).
The Pdb were then subjected to additional analysis. In this study, two
different experiments for computational analyses were designed and
carried out. In the first experiment, here called the 2-targeted (2-t)
experiment, subspecies were used to divide datasets into wild and
cultivated categories. Second experiments, here called the 9-targeted (9-
t) experiment, were designed to assess the differentiation power of the
informative loci to assign each population to the geographical origin. In
the 9-t experiment, nine different countries were defined as nine
different geographically targets for analyses.

2.3. Features selection with weighting algorithms

The main objective of feature selection is to select a subset of most
informative and non-redundant features that can increase the modeling
performance [45]. For selection of the most indicative and informative
features (alleles), seven weighting algorithms, including Super Vector
Machine (SVM), Chi-Square, Gini Index, Information Gain Ratio, Infor-
mation Gain, Uncertainty and PCA were implied on the Pdb. Attribute
weighting results were normalized between 0 and 1 and the attributes
with values higher than 0.5 were considered as indicative attribute.
Results of weighting algorithms were used for creation of distinct data
set.

2.4. Prediction and classification with supervised ML methods

Seven data sets of attribute weighting steps plus the Pdb were
separately implied for prediction and classification with three

Table 1
Details regarding the 1378 accessions of grapevine used in this study from the
different geographical regions of the world.

Country Accessions

V. vinifera spp. sylvestris) V. vinifera spp. sativa
Spain 192 145
Italy 289 34
France 46 32
Georgia 76 112
Turkmenistan - 59
Pakistan - 14
Croatia 38 -
Armenia 49 -
Azerbaijan 292 -

Total 982 396
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supervised methods, including the Naive Bayes, SVM and Tree Induc-
tion. In order to construct the most accurate decision trees, four decision
tree algorithms viz., Decision Tree, Decision Stump, Random Tree, and
Random Forest with four different criteria (Gain Ratio, Information
Gain, Gini Index and Accuracy) were separately run on each eight da-
tabases, and the mean of accuracy was reported. In the Naive Bayes
algorithm, two models namely Naive Bayes (returns classification model
using estimated normal distributions) and Naive Bayes kernel (returns
classification model using estimated kernel densities) with four Gain
Ratio, Information Gain, Gini Index and Accuracy criteria were run.
Regarding the SVM algorithm, four kernels, including the ref, sigmoid,
linear, and poly were tested on data sets in two experiments. To avoid
over fitting of models, performance of the models was evaluated with
10-fold cross validation. In both experiments, 90% of the data were set
as training and remaining 10% were used as test data. This procedure
was repeated 10 times (10-folds) and the accuracy of prediction and
classification was defined by taking the percentage of correct pre-
dictions over the total number of examples. Workflow of the imple-
mented pipeline was presented in Fig. 1.

3. Results
3.1. Allele identification and allele frequency determination

Alleles’ frequency was screened across 20 microsatellite loci. Among
412 scored alleles, VMC4f3 and VVMD28 with 31 and VVIg52 with 11

alleles were detected as the most and least variable loci, respectively
(Table 2).
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Table 2
Microsatellite allele lengths, loci and the total alleles.
Locus Allele lengths (bp) Total
alleles
VVIp60 320-289-316-298-328-318-302-310-314-306-272-300- 20
312-322-304-324-279-330-326-308
VVMD28 235-243-233-245-217-257-277-247-271-227-275-239- 31

225-253-263-215-255-251-259-267-261-265-231-223-
241-249-237-219-280-269-273

VVIb01 290-294-288-298-272-316-278-284-308-292-286-302- 20
300-296-304-306-312-318-324-310

VVMD27 179-187-185-195-181-175-183-189-193-191-177-213- 20
207-171-217-211-203-201-197-219

VVIv67 354-356-348-360-358-336-368-344-350-364-352-374- 26
346-372-324-362-370-332-334-366-342-255-376-386-
378-384

VVMD32 257-271-251-243-239-247-255-249-261-265-245-253- 19
241-263-259-267-273-269-277

VVInlé 149-151-147-157-141-155-145-159-153-172-168-161- 13
156

VVMD21 241-255-247-249-226-219-245-253-251-230-239-243- 18
237-257-265-263-271-261

VVIv37 159-149-167-155-153-145-173-147-157-163-151-141- 21
177-161-165-179-143-169-175-171-176

VVMD24 206-210-214-216-208-204-212-202-196-194-200-218 12

VVMD7 235-247-243-249-233-251-239-253-259-241-245-263- 20
237-267-257-261-231-265-255-269

VMC1b11 165-181-173-169-183-187-193-185-171-167-175-197- 22
177-163-191-157-155-151-199-195-179-189

VVSs2 133-125-143-139-137-135-141-151-131-145-149-123- 20
147-153-157-159-155-129-167-161

VVMD5 240-228-234-238-232-226-236-230-224-265-252-222- 20
242-244-248-246-250-267-263-233

VVIn73 257-263-267-265-259-253-261-255-271-251-273-270- 14
275-269

VVIp31 184-166-172-186-188-190-192-174-182-178-170-180- 26
176-196-204-200-194-213-202-164-158-161-198-215-
217-206

VVIh54 147-151-139-165-167-159-175-163-153-129-155-149- 25
145-143-157-161-137-131-169-141-173-171-179-177-
181

VVIg52 80-78-84-76-82-88-86-74-66-72-68 11

VMC4£3.1  172-164-182-186-188-178-166-158-204-174-176-170- 31
206-202-180-208-149-194-168-196-153-156-143-210-
190-184-192-212-200-233-179

VVMD25 238-254-240-248-242-244-266-250-262-236-252-256- 23
270-260-246-272-239-268-258-264-275-261-257

Total 412
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Fig. 1. Flowchart of the data analysis, which shows the structure of the
analytical approach to the investigation of microsatellite (SSR) markers in
this study.

3.2. Data cleaning

Among the investigated SSRs, 17 loci with above 50% effective al-
leles higher were included for further analyses. These alleles included
VMC1b11l, VMC4f3, VVIb01l, VVIh54, VVInl6, VVIp31l, VVIp60,
VVIq52, VVIv37, VVMD21, VVMD24, VVMD27, VVMD28, VVMD32,
VVMD5, VVMD?7 and VVS2.

3.3. Feature selection by weighting algorithms

Seven attributes weighting algorithms (AWA) were applied on Pdb
and gave feature weight values between 0 and 1. The weight value
higher than 0.5 % was implied as selective criteria in both experiments.
In the 2-t experiment, VVMD32-271 was the most important allele
pointed out by 6 AWAs, followed by VVMD7-263, VVS02-147,
VVMD27-179, VVMD21-253, VVIq52-78, VVMD27-189, VVIh54-165,
VVMD5-232 and VVMD28-243. Weighted values for all alleles were
presented in supplementary Table S1. In the 9-t experiment,
VVIh54_1_139, VVMD21_1_249, VVMD21_2 249, VVMD32_1_247, and
VVMD32_2 247 were the most important alleles pointed out by all
AWAs. Moreover, importance of VVMD32_1 243, VVIn73_1_257,
VVIp60_1_302, and VVMD7_1_235 alleles were confirmed by more than
three AWAs (supplementary Table S1).
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3.4. Machine learning prediction of target populations

3.4.1. Tree induction models

The performances among 416 tree induction models viz, Decision
Stump, Decision Tree, Decision Parallel and Random Forest Tree, with 4
different criteria including the Gain ratio, Information gain, Gini index
and Accuracy run on eight different data sets ranged from 24 to 86 % for
both experiments (Table 3). In the 2-t experiment, the highest (86.87%)
and lowest (71.26 %) performance gained when Decision tree run with
Information Gain and Decision Stumps run with Gini index respectively
(Table 3). Prediction rates aforementioned algorithms in the 2-t exper-
iment are presented in Table 4, where 304 Sativa accessions out of 396
and 893 Sylvestris accessions out of 982 were correctly predicted.
However, 92 Sylvestris accessions were predicted as Sativa accessions.

Fig. 2 illustrates the tree constructed by the Decision Tree model
based on Pdb for the 2-t experiment. VVMD32-271 was the root feature
and the most important feature. As shown in Fig. 2, presence of any of
the VVMD32-271, —259 and —257 alleles would help to separate wild
and cultivated accessions of grapevines. Absence of VVMD32-271, —259
and —257 alleles and presence of VVMD28-265, VVMD32-259, VVMD7-
263, VVMC1b11-181, VVIv37-161, VVIb01-296, or VVIp31-196 would
be categorized the grapevines as cultivated (Sativa) subspecies.

In the 9-t experiment, the highest (86.87%) and lowest (71.24 %)
performance gained when Decision Tree run with accuracy criteria and
Random Tree run with Information Gain, respectively (Table 3). Pre-
dicted details for Decision Tree run with accuracy criteria are presented
in Table 5, where 75 out of 188 accessions from Georgia, 25 out of 49
accessions from Armenia, 262 out of 292 accessions from Azerbaijan,
335 out of 337 accessions from Spain, and 170 out of 323 accessions
from Italy were predicted correctly (Table 5). Croatia samples were all
correctly predicted.

As shown in Fig. 3, in the 9-t experiment VVh54-139 allele was
defined as root feature for the constructed decision tree. In combination
with VVMD21-253 allele, the tree was able to classify accessions from
Georgia, while absence of allele VVMD28-257 combined with the
presence of allele VVMD7-263 identified accessions from Azerbaijan
country.

3.4.2. Support vector machine (SVM) approach

In this study, SVM was used with RBF, Sigmoid, Linear and Poly as
the kernel function. In the 2-t experiment, highest and lowest overall
accuracy of different SVM models ran with different kernel types were in
the range of 71.26-97.46 % for the 2-t experiments and 24.46-92.53%
for the 9-t experiment (Table 6).

3.4.3. Naive Bayes

The accuracies of Naive Bayes and Naive Bayes Kernel models ran on
seven datasets for two designed experiments were presented in Table 7.
In the 2-t experiment, the lowest accuracy (84.03%) gained when both
Bayesian models ran on PCA dataset, whereas the best accuracy
(96.81%) gained when Naive Bayes and Naive Bayes Kernel models ran
on Pdb. In the 9-t experiment, the lowest accuracy (31.20%) gained
when Naive Bayes kernel model ran on SVM dataset. However, the best
accuracy (93.69%) gained when Naive Bayes and Naive Bayes kernel
models ran on Pdb.

Table 3

Biochemistry and Biophysics Reports 38 (2024) 101678

Table 4

Prediction rate (accuracy) details of decision tree (using information gain
criteria) with 10-fold cross validation for each types in the 2-targeted (2-t)
experiment.

True Predicted V. vinifera subps. Sativa V. vinifera subps. Sylvestris

V. vinifera subps. Sativa 304 (out of 396) 89
V. vinifera subps. Sylvestris 92 893 (out of 982)

4. Discussion

The predictive ability and robustness of ML algorithms has proven
superior to statistical and classical methods such as principal component
analysis (PCA) and cluster analysis in many studies [46]. In particular,
ML algorithms have been successfully applied to find specific molecular
markers for prediction of olive [47,48], wheat [49] cultivars. Due to
their reduced application time, high predictive performance and
generalization capabilities, ML algorithms are becoming a valuable tool
for data mining.

In this study, five loci namely VVMD7, VVMD32, VVMD21, VVS2,
and VVIq52 from a starting set of 20 loci were selected based on their
efficiency in characterizing the two subspecies, as defined by the entire
attribute weighting algorithms. The informative features of VVS2,
VVMD7, VVMD32, VVMDS5 and VVIq52 have been reported by previous
studies [25,26,31,50,51].

Doulati-Baneh et al. [26] have demonstrated that VVS2 and VVMD7
loci are able to differentiate 67 Iranian cultivars and landraces. Wang
et al. [27] reported that VVMD7 and VVMD32 are the most indicative
loci among 49 accessions of grape genotypes originating from different
countries. De Andres et al. [25] also reported that VVS2 and VVMD?7 are
the most indicative locus among 237 Spanish cultivars.

Genetic diversity of grapevine has been characterized using different
molecular markers through several studies [25-27,31,43,50]. However,
finding ranked patterns/combinations of molecular markers that may
provide higher efficiencies for differentiating among grapevine acces-
sions has not been attempted up to now. Supervised machine learning
models are methods of choice for this purpose. This is the first study, to
the best of our knowledge, which is reporting application of ML models
to find the best indicative and informative combination of candidate SSR
markers in world grapevine accessions. Our findings has distinguished
world wild and cultivated grapevine accessions via introducing the most
indicative distinguishing alleles. Diago et al. [52] and Fernandes et al.
[53] utilized hyper spectral imaging for the varietal classification of
grapevine leaves and clones respectively.

As shown in Table 3, the overall accuracies for tree induction models
were generally high for all algorithms. Precision of wild accessions
prediction is more than cultivated accessions prediction except when the
Decision Tree model ran with Gain Ratio and Decision Stump model ran
with Gain Ratio and Information Gain.

With an increase in the number of target groups from the first (2-t) to
the second (9-t) experiment, an increase in the number of informative
loci was observed. According to our finding, VVIh54-139 and VVMD32-
271 that are located at the top of the tree hierarchies (Figs. 2 and 3) have
adequate abilities to separate and shape the topology; furthermore,
construct patterns of the marker-based discrimination. In this respect,
Beiki et al. [47] analyses showed that ISSR loci UBC841a4 were the

The performance of induction tree models on Pdb computed at 10-fold cross validation for both experiments.

Models 2-t experiment 9-t experiment

Gain Ratio Information Gain Gini Index Accuracy Gain Ratio Information Gain Gini Index Accuracy
Decision Tree 85.92 86.87 85.56 85.34 50.87 63.43 57.4 71.84
Decision Stump 80.48 80.48 71.26 71.26 25.11 39.48 24.46 24.46
Random Forest 71.26 71.26 71.26 71.26 47.1 27.79 28.81 39.04
Random Tree 71.70 71.70 73.22 71.70 24.46 24.46 31.93 31.28
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Fig. 2. Decision Tree generated model showing separation of wild and cultivated grape populations in the 2-targeted (2-t) experiment.

Table 5
Prediction rate (accuracy) details of each decision tree with 10-fold cross validation for each of the types in the 9-targeted (9-t) experiment.
True Predicted Turkmenistan Pakistan Georgia Armenia Azerbaijan Croatia Spain France Italy
Turkmenistan 39 1 2 2 1 0 1 0 0
Pakistan 0 7 2 1 0 0 0 0 0
Georgia 7 1 175 1 5 0 1 0 0
Armenia 3 0 2 30 4 0 0 0 2
Azerbaijan 4 2 1 2 262 0 0 0 3
Croatia 0 0 0 0 0 38 0 0 0
Spain 5 2 6 9 15 0 335 0 48
France 0 0 0 0 0 0 0 77 0
Italy 1 1 0 4 5 0 0 1 270
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Fig. 3. Decision Tree generated model showing separation of grape populations in the 9-targeted (9-t) experiment.
superior attributes in making classification among foreign and domestic make an obvious discriminative pattern between different olive
olive cultivars with 100% accuracy. Torkzaban et al. [48] have shown accessions.
that DCA14-149, DCA9-206 and DCA16-178-2 have enough potential to Bayesian algorithms were even more successful than the decision
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Table 6
The total accuracy obtained from running SVM (C-SVC) method.
kernel type Radial Basis Functions (RBF) Sigmoid Linear Polynomial
2-t experiment 97.46 71.26 95.07 96.03
9t-experiment 92.53% 24.46% 78.81% 88.82%

Declaration of competing interest

Table 7
The accuracy of Bayesian model on various datasets computed by 10-fold cross
validation.

Dataset

The authors declare there is not any conflict of interest.

9-t experiment 2-t experiment References
Naive Bayes Naive Naive Bayes Naive
Kernel Bayes Kernel Bayes [1] B. Panahi, R. Afzal, M. Ghorbanzadeh Neghab, M. Mahmoodnia, B. Paymard,
Relationship among AFLP, RAPD marker diversity and Agromorphological traits in
Pdb 93.69% 93.69% 96.81% 96.81% safflower (Carthamus tinctorius L.), Prog. Biol. Sci. 3 (1) (2013) 90-99.
Info Gain 58.64% 58.64% 90.78% 90.78% [2] B. Panahi, M.G. Neghab, Genetic characterization of Iranian safflower (Carthamus
Ratio tinctorius) using inter simple sequence repeats (ISSR) markers, Physiol. Mol. Biol.
Info Gain 67.49% 67.49% 86.79% 86.79% Plants 19 (2) (2013) 239-243.
SVM 31.20% 71.99% 94.63% 91.8% [3] B. Mahmoudi, B. Panahi, S.A. Mohammadi, M. Daliri, M.S. Babayev, Microsatellite
Gini 65.46% 65.46% 88.24% 88.24% based phylogeny and bottleneck studies of Iranian indigenous goat populations,
PCA 90.28% 87.45% 84.03% 84.03% Anim. Biotechnol. 25 (3) (2014) 210-222.
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