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A B S T R A C T   

Development of efficient analytical techniques is required for effective interpretation of biological data to take 
novel hypotheses and finding the critical predictive patterns. Machine Learning algorithms provide a novel 
opportunity for development of low-cost and practical solutions in biology. In this study, we proposed a new 
integrated analytical approach using supervised machine learning algorithms and microsatellites data of 
worldwide vitis populations. A total of 1378 wild (V. vinifera spp. sylvestris) and cultivated (V. vinifera spp. sativa) 
accessions of grapevine were investigated using 20 microsatellite markers. Data cleaning, feature selection, and 
supervised machine learning classification models vis, Naive Bayes, Support Vector Machine (SVM) and Tree 
Induction methods were implied to find most indicative and diagnostic alleles to represent wild/cultivated and 
originated geography of each population. Our combined approaches showed microsatellite markers with the 
highest differentiating capacity and proved efficiency for our pipeline of classification and prediction of vitis 
accessions. Moreover, our study proposed the best combination of markers for better distinguishing of pop
ulations, which can be exploited in future germplasm conservation and breeding programs.   

1. Introduction 

Over the last decade, advances in molecular biology technologies 
have led to tremendous growth in biological data. Among biology 
technologies, a wide range of molecular techniques has been developed 
for genetic diversity and germplasm characterization of organisms 
[1–5]. These data present the raw material needed to gain insights into 
the hidden layer of molecular diversity data. However, the potential of 
these data can only be realized through next-level analyses [6]. On top of 
that, the development of new analytical models for interpretation and 
understanding of these biological processes to take new perspectives, 
generate novel hypotheses, and find critical predictive patterns. Among 
different modeling approaches, Machine Learning algorithms provide 
numerous opportunities for development of low-cost and practical so
lutions [7–9]. Machine learning is an area of artificial intelligence that is 
integrated with statistical and computational methods to automatically 
learn from data. The learning process itself refers to knowledge 

discovery that translate the features in the training data into pattern, 
and clustering/prediction of the labels [10,11]. 

Machine learning is divided into two overarching categories viz., 
supervised and unsupervised learning methods [12]. Unsupervised 
machine learning methods are used when the labels on the input data 
are unknown; these methods learn only from patterns in the features of 
the input data. In supervised methods, on the other hand, labeled fea
tures are trained to predict the class labels based on training examples. 
Among a large number of supervised models reported, decision trees, 
naive Bayes, and support vector machines (SVMs) are simple and 
effective methods with a broad range of application in biology [8,9, 
12–15]. 

SVM is the most popular supervised learning algorithms, which uses 
kernel function to project data into a higher dimensional space to clas
sify data. In other words, SVM is based on the concept of decision planes 
that define decision boundaries between different class members [12, 
15]. Decision trees are predictive models that are performed under 
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uncertain conditions in a recursive manner. Decision trees are made of a 
root, internal, or non-leaf node (test on attributes) and leaf nodes (label 
class) [12,14]. The Naive Bayesian classifier is expanded based on 
Bayes’ theorem with features independence hypothesis. Despite easy to 
implement, Naive-Bayes classifier is known as highly sophisticated 
classifiers [7,16]. 

Grapevine has had a noble gift of nature to the mankind and cultural 
importance for the Iranians through millennia. Grapevine, as the most 
widely grown fruit plants in the world, is recognized as the earliest 
domesticated fruit plants in the world nowadays [17–21]. Vitis, is the 
commonly cultivated grapevine in the worldwide, ranges from Central 
Asia to the Mediterranean Basin [21]. Within the genus Vitis, V. vinifera 
is the primary species used in the viticulture for the large-scale pro
duction of table fruits, raisins, juice, and wine [18]. Two subspecies 
sylvestris and sativa have been described for V. vinifera, which includes 
the wild populations and cultivated/domesticated varieties, respectively 
[22]. Grape domestication occurred in the upland regions of Eastern 
Turkey and in the northwest of Iran about 6000–8000 years ago [23,24]. 
From there that domesticated grapevines spread to Southern Balkans 
and East Mediterranean Basin. During the first millennium, BCE 
grapevine appeared in Sicily, Western and Central Europe. Then, 
grapevine cultivation reached Central and South East Asia (This et al., 
2006; [22]). Despite the many studies of genetic diversity and research 
on grapevine domestication history and its spread, but this proposition 
has remained mysterious, until now. Recently, a study with molecular 
mechanism in 3525 cultivated and wild accessions suggested that 
grapevine domestication occurred concurrently about 11,000 years ago 
in Western Asia and the Caucasus to yield table and wine grapevines 
[21]. 

The cultivated grape V. vinifera subsp. sativa has had a great eco
nomic impact all over the world. However, because of human popula
tion growth, destruction of habitats, and natural phenomena such as 
floods, fire and pathogen dispersal, the wild grape V. vinifera subsp. 
sylvestris, is in danger of extinction currently. Hence, there is urgent need 
to characterize and conserve grape germplasm for future programs. So 
far various molecular markers, such as SSR [22,25–36], SNP [20,22,28, 
37–41], AFLP [42], Retrotransposon [43,44] and ISSR [31] have been 
used to characterize different grapevine accessions. However, because of 
considerable genetic diversity and synonyms (variety of names for the 
same genotype) or homonyms (same name for different genotypes) in 
the clonal propagated grapevines, characterizations of the accessions are 
still challenge. Although molecular markers especially SSR and SNP are 
effective methods to characterization and classifying the worldwide 
grapevine germplasm. Nevertheless, machine learning (ML) approaches, 
which efficiently facilitate pattern recognition and classification leading 
to prediction by creating models using existing data. Therefore the 
integration of molecular markers with machine learning approaches 
could help to classification and prediction by creating models using 
existing data of grapevine for future diversity and conservation 
programs. 

The data produced in Riaz et al. [30] provides valuable information 
of microsatellites profiles for Caucasus, Central Asia, and the Mediter
ranean basin vitis collections. In order to determine the most indicative 
markers for distinguishing among diverse vitis populations and sub
species, we assessed machine learning based modeling approach on 
these data sets. The main objective of this study was to evaluate feasi
bility and efficiency of supervised machine learning algorithms in clas
sification and prediction of worldwide vitis populations based on 
microsatellites data sets. We show that the integrated pipeline used in 
this study is highly reliable in classifying and predicting world grapevine 
accessions. 

2. Materials and methods 

2.1. Datasets 

A total of 1378 wild (V. vinifera spp. sylvestris) and cultivated 
(V. vinifera spp. sativa) accessions of grapevine across different regions of 
central Mediterranean and Central basin were subjected to 20 micro
satellite markers (namely; VMC1b11, VMC4f3.1, VVIb01, VVIh54, 
VVIn16, VVIn73, VVIp31, VVIp60, VVIq52, VVIv37, VVIv67, VVMD21, 
VVMD24, VVMD25, VVMD27, VVMD28, VVMD32, VVMD5, VVMD7, 
VVS2) analysis [30]. The datasets belonged to nine countries including 
Turkmenistan, Pakistan, Georgia, Armenia, Azerbaijan, Croatia, Spain, 
France and Italy. Table 1 provides the details of accessions that were 
included in this study. 

2.2. Data processing 

In data cleaning step, at first, allelic profiles for all accessions were 
converted into yes/no binomial variables, assigning ‘yes’ for the present 
allele and ‘no’ for all other absent alleles at each locus. Next, correlated 
(correlation coefficient higher than 0.95), and useless attributes (above 
and below percent of examples) were removed from initial data sets. 
Hereafter the processed data sets were called Pdb (Processed database). 
The Pdb were then subjected to additional analysis. In this study, two 
different experiments for computational analyses were designed and 
carried out. In the first experiment, here called the 2-targeted (2-t) 
experiment, subspecies were used to divide datasets into wild and 
cultivated categories. Second experiments, here called the 9-targeted (9- 
t) experiment, were designed to assess the differentiation power of the 
informative loci to assign each population to the geographical origin. In 
the 9-t experiment, nine different countries were defined as nine 
different geographically targets for analyses. 

2.3. Features selection with weighting algorithms 

The main objective of feature selection is to select a subset of most 
informative and non-redundant features that can increase the modeling 
performance [45]. For selection of the most indicative and informative 
features (alleles), seven weighting algorithms, including Super Vector 
Machine (SVM), Chi-Square, Gini Index, Information Gain Ratio, Infor
mation Gain, Uncertainty and PCA were implied on the Pdb. Attribute 
weighting results were normalized between 0 and 1 and the attributes 
with values higher than 0.5 were considered as indicative attribute. 
Results of weighting algorithms were used for creation of distinct data 
set. 

2.4. Prediction and classification with supervised ML methods 

Seven data sets of attribute weighting steps plus the Pdb were 
separately implied for prediction and classification with three 

Table 1 
Details regarding the 1378 accessions of grapevine used in this study from the 
different geographical regions of the world.  

Country Accessions 

V. vinifera spp. sylvestris) V. vinifera spp. sativa 

Spain 192 145 
Italy 289 34 
France 46 32 
Georgia 76 112 
Turkmenistan – 59 
Pakistan – 14 
Croatia 38 – 
Armenia 49 – 
Azerbaijan 292 – 
Total 982 396  
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supervised methods, including the Naive Bayes, SVM and Tree Induc
tion. In order to construct the most accurate decision trees, four decision 
tree algorithms viz., Decision Tree, Decision Stump, Random Tree, and 
Random Forest with four different criteria (Gain Ratio, Information 
Gain, Gini Index and Accuracy) were separately run on each eight da
tabases, and the mean of accuracy was reported. In the Naive Bayes 
algorithm, two models namely Naive Bayes (returns classification model 
using estimated normal distributions) and Naive Bayes kernel (returns 
classification model using estimated kernel densities) with four Gain 
Ratio, Information Gain, Gini Index and Accuracy criteria were run. 
Regarding the SVM algorithm, four kernels, including the ref, sigmoid, 
linear, and poly were tested on data sets in two experiments. To avoid 
over fitting of models, performance of the models was evaluated with 
10-fold cross validation. In both experiments, 90% of the data were set 
as training and remaining 10% were used as test data. This procedure 
was repeated 10 times (10-folds) and the accuracy of prediction and 
classification was defined by taking the percentage of correct pre
dictions over the total number of examples. Workflow of the imple
mented pipeline was presented in Fig. 1. 

3. Results 

3.1. Allele identification and allele frequency determination 

Alleles’ frequency was screened across 20 microsatellite loci. Among 
412 scored alleles, VMC4f3 and VVMD28 with 31 and VVIq52 with 11 
alleles were detected as the most and least variable loci, respectively 
(Table 2). 

3.2. Data cleaning 

Among the investigated SSRs, 17 loci with above 50% effective al
leles higher were included for further analyses. These alleles included 
VMC1b11, VMC4f3, VVIb01, VVIh54, VVIn16, VVIp31, VVIp60, 
VVIq52, VVIv37, VVMD21, VVMD24, VVMD27, VVMD28, VVMD32, 
VVMD5, VVMD7 and VVS2. 

3.3. Feature selection by weighting algorithms 

Seven attributes weighting algorithms (AWA) were applied on Pdb 
and gave feature weight values between 0 and 1. The weight value 
higher than 0.5 % was implied as selective criteria in both experiments. 
In the 2-t experiment, VVMD32-271 was the most important allele 
pointed out by 6 AWAs, followed by VVMD7-263, VVSO2-147, 
VVMD27-179, VVMD21-253, VVIq52-78, VVMD27-189, VVIh54-165, 
VVMD5-232 and VVMD28-243. Weighted values for all alleles were 
presented in supplementary Table S1. In the 9-t experiment, 
VVIh54_1_139, VVMD21_1_249, VVMD21_2_249, VVMD32_1_247, and 
VVMD32_2_247 were the most important alleles pointed out by all 
AWAs. Moreover, importance of VVMD32_1_243, VVIn73_1_257, 
VVIp60_1_302, and VVMD7_1_235 alleles were confirmed by more than 
three AWAs (supplementary Table S1). 

Fig. 1. Flowchart of the data analysis, which shows the structure of the 
analytical approach to the investigation of microsatellite (SSR) markers in 
this study. 

Table 2 
Microsatellite allele lengths, loci and the total alleles.  

Locus Allele lengths (bp) Total 
alleles 

VVIp60 320-289-316-298-328-318-302-310-314-306-272-300- 
312-322-304-324-279-330-326-308 

20 

VVMD28 235-243-233-245-217-257-277-247-271-227-275-239- 
225-253-263-215-255-251-259-267-261-265-231-223- 
241-249-237-219-280-269-273 

31 

VVIb01 290-294-288-298-272-316-278-284-308-292-286-302- 
300-296-304-306-312-318-324-310 

20 

VVMD27 179-187-185-195-181-175-183-189-193-191-177-213- 
207-171-217-211-203-201-197-219 

20 

VVIv67 354-356-348-360-358-336-368-344-350-364-352-374- 
346-372-324-362-370-332-334-366-342-255-376-386- 
378-384 

26 

VVMD32 257-271-251-243-239-247-255-249-261-265-245-253- 
241-263-259-267-273-269-277 

19 

VVIn16 149-151-147-157-141-155-145-159-153-172-168-161- 
156 

13 

VVMD21 241-255-247-249-226-219-245-253-251-230-239-243- 
237-257-265-263-271-261 

18 

VVIv37 159-149-167-155-153-145-173-147-157-163-151-141- 
177-161-165-179-143-169-175-171-176 

21 

VVMD24 206-210-214-216-208-204-212-202-196-194-200-218 12 
VVMD7 235-247-243-249-233-251-239-253-259-241-245-263- 

237-267-257-261-231-265-255-269 
20 

VMC1b11 165-181-173-169-183-187-193-185-171-167-175-197- 
177-163-191-157-155-151-199-195-179-189 

22 

VVS2 133-125-143-139-137-135-141-151-131-145-149-123- 
147-153-157-159-155-129-167-161 

20 

VVMD5 240-228-234-238-232-226-236-230-224-265-252-222- 
242-244-248-246-250-267-263-233 

20 

VVIn73 257-263-267-265-259-253-261-255-271-251-273-270- 
275-269 

14 

VVIp31 184-166-172-186-188-190-192-174-182-178-170-180- 
176-196-204-200-194-213-202-164-158-161-198-215- 
217-206 

26 

VVIh54 147-151-139-165-167-159-175-163-153-129-155-149- 
145-143-157-161-137-131-169-141-173-171-179-177- 
181 

25 

VVIq52 80-78-84-76-82-88-86-74-66-72-68 11 
VMC4f3.1 172-164-182-186-188-178-166-158-204-174-176-170- 

206-202-180-208-149-194-168-196-153-156-143-210- 
190-184-192-212-200-233-179 

31 

VVMD25 238-254-240-248-242-244-266-250-262-236-252-256- 
270-260-246-272-239-268-258-264-275-261-257 

23 

Total  412  
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3.4. Machine learning prediction of target populations 

3.4.1. Tree induction models 
The performances among 416 tree induction models viz, Decision 

Stump, Decision Tree, Decision Parallel and Random Forest Tree, with 4 
different criteria including the Gain ratio, Information gain, Gini index 
and Accuracy run on eight different data sets ranged from 24 to 86 % for 
both experiments (Table 3). In the 2-t experiment, the highest (86.87%) 
and lowest (71.26 %) performance gained when Decision tree run with 
Information Gain and Decision Stumps run with Gini index respectively 
(Table 3). Prediction rates aforementioned algorithms in the 2-t exper
iment are presented in Table 4, where 304 Sativa accessions out of 396 
and 893 Sylvestris accessions out of 982 were correctly predicted. 
However, 92 Sylvestris accessions were predicted as Sativa accessions. 

Fig. 2 illustrates the tree constructed by the Decision Tree model 
based on Pdb for the 2-t experiment. VVMD32-271 was the root feature 
and the most important feature. As shown in Fig. 2, presence of any of 
the VVMD32-271, − 259 and − 257 alleles would help to separate wild 
and cultivated accessions of grapevines. Absence of VVMD32-271, − 259 
and − 257 alleles and presence of VVMD28-265, VVMD32-259, VVMD7- 
263, VVMC1b11-181, VVIv37-161, VVIb01-296, or VVIp31-196 would 
be categorized the grapevines as cultivated (Sativa) subspecies. 

In the 9-t experiment, the highest (86.87%) and lowest (71.24 %) 
performance gained when Decision Tree run with accuracy criteria and 
Random Tree run with Information Gain, respectively (Table 3). Pre
dicted details for Decision Tree run with accuracy criteria are presented 
in Table 5, where 75 out of 188 accessions from Georgia, 25 out of 49 
accessions from Armenia, 262 out of 292 accessions from Azerbaijan, 
335 out of 337 accessions from Spain, and 170 out of 323 accessions 
from Italy were predicted correctly (Table 5). Croatia samples were all 
correctly predicted. 

As shown in Fig. 3, in the 9-t experiment VVh54-139 allele was 
defined as root feature for the constructed decision tree. In combination 
with VVMD21-253 allele, the tree was able to classify accessions from 
Georgia, while absence of allele VVMD28-257 combined with the 
presence of allele VVMD7-263 identified accessions from Azerbaijan 
country. 

3.4.2. Support vector machine (SVM) approach 
In this study, SVM was used with RBF, Sigmoid, Linear and Poly as 

the kernel function. In the 2-t experiment, highest and lowest overall 
accuracy of different SVM models ran with different kernel types were in 
the range of 71.26–97.46 % for the 2-t experiments and 24.46–92.53% 
for the 9-t experiment (Table 6). 

3.4.3. Naive Bayes 
The accuracies of Naive Bayes and Naive Bayes Kernel models ran on 

seven datasets for two designed experiments were presented in Table 7. 
In the 2-t experiment, the lowest accuracy (84.03%) gained when both 
Bayesian models ran on PCA dataset, whereas the best accuracy 
(96.81%) gained when Naive Bayes and Naive Bayes Kernel models ran 
on Pdb. In the 9-t experiment, the lowest accuracy (31.20%) gained 
when Naive Bayes kernel model ran on SVM dataset. However, the best 
accuracy (93.69%) gained when Naive Bayes and Naive Bayes kernel 
models ran on Pdb. 

4. Discussion 

The predictive ability and robustness of ML algorithms has proven 
superior to statistical and classical methods such as principal component 
analysis (PCA) and cluster analysis in many studies [46]. In particular, 
ML algorithms have been successfully applied to find specific molecular 
markers for prediction of olive [47,48], wheat [49] cultivars. Due to 
their reduced application time, high predictive performance and 
generalization capabilities, ML algorithms are becoming a valuable tool 
for data mining. 

In this study, five loci namely VVMD7, VVMD32, VVMD21, VVS2, 
and VVIq52 from a starting set of 20 loci were selected based on their 
efficiency in characterizing the two subspecies, as defined by the entire 
attribute weighting algorithms. The informative features of VVS2, 
VVMD7, VVMD32, VVMD5 and VVIq52 have been reported by previous 
studies [25,26,31,50,51]. 

Doulati-Baneh et al. [26] have demonstrated that VVS2 and VVMD7 
loci are able to differentiate 67 Iranian cultivars and landraces. Wang 
et al. [27] reported that VVMD7 and VVMD32 are the most indicative 
loci among 49 accessions of grape genotypes originating from different 
countries. De Andres et al. [25] also reported that VVS2 and VVMD7 are 
the most indicative locus among 237 Spanish cultivars. 

Genetic diversity of grapevine has been characterized using different 
molecular markers through several studies [25–27,31,43,50]. However, 
finding ranked patterns/combinations of molecular markers that may 
provide higher efficiencies for differentiating among grapevine acces
sions has not been attempted up to now. Supervised machine learning 
models are methods of choice for this purpose. This is the first study, to 
the best of our knowledge, which is reporting application of ML models 
to find the best indicative and informative combination of candidate SSR 
markers in world grapevine accessions. Our findings has distinguished 
world wild and cultivated grapevine accessions via introducing the most 
indicative distinguishing alleles. Diago et al. [52] and Fernandes et al. 
[53] utilized hyper spectral imaging for the varietal classification of 
grapevine leaves and clones respectively. 

As shown in Table 3, the overall accuracies for tree induction models 
were generally high for all algorithms. Precision of wild accessions 
prediction is more than cultivated accessions prediction except when the 
Decision Tree model ran with Gain Ratio and Decision Stump model ran 
with Gain Ratio and Information Gain. 

With an increase in the number of target groups from the first (2-t) to 
the second (9-t) experiment, an increase in the number of informative 
loci was observed. According to our finding, VVIh54-139 and VVMD32- 
271 that are located at the top of the tree hierarchies (Figs. 2 and 3) have 
adequate abilities to separate and shape the topology; furthermore, 
construct patterns of the marker-based discrimination. In this respect, 
Beiki et al. [47] analyses showed that ISSR loci UBC841a4 were the 

Table 3 
The performance of induction tree models on Pdb computed at 10-fold cross validation for both experiments.  

Models 2-t experiment 9-t experiment 

Gain Ratio Information Gain Gini Index Accuracy Gain Ratio Information Gain Gini Index Accuracy 

Decision Tree 85.92 86.87 85.56 85.34 50.87 63.43 57.4 71.84 
Decision Stump 80.48 80.48 71.26 71.26 25.11 39.48 24.46 24.46 
Random Forest 71.26 71.26 71.26 71.26 47.1 27.79 28.81 39.04 
Random Tree 71.70 71.70 73.22 71.70 24.46 24.46 31.93 31.28  

Table 4 
Prediction rate (accuracy) details of decision tree (using information gain 
criteria) with 10-fold cross validation for each types in the 2-targeted (2-t) 
experiment.  

True Predicted V. vinifera subps. Sativa V. vinifera subps. Sylvestris 

V. vinifera subps. Sativa 304 (out of 396) 89 
V. vinifera subps. Sylvestris 92 893 (out of 982)  
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superior attributes in making classification among foreign and domestic 
olive cultivars with 100% accuracy. Torkzaban et al. [48] have shown 
that DCA14-149, DCA9-206 and DCA16-178-2 have enough potential to 

make an obvious discriminative pattern between different olive 
accessions. 

Bayesian algorithms were even more successful than the decision 

Fig. 2. Decision Tree generated model showing separation of wild and cultivated grape populations in the 2-targeted (2-t) experiment.  

Table 5 
Prediction rate (accuracy) details of each decision tree with 10-fold cross validation for each of the types in the 9-targeted (9-t) experiment.  

True Predicted Turkmenistan Pakistan Georgia Armenia Azerbaijan Croatia Spain France Italy 

Turkmenistan 39 1 2 2 1 0 1 0 0 
Pakistan 0 7 2 1 0 0 0 0 0 
Georgia 7 1 175 1 5 0 1 0 0 
Armenia 3 0 2 30 4 0 0 0 2 
Azerbaijan 4 2 1 2 262 0 0 0 3 
Croatia 0 0 0 0 0 38 0 0 0 
Spain 5 2 6 9 15 0 335 0 48 
France 0 0 0 0 0 0 0 77 0 
Italy 1 1 0 4 5 0 0 1 270  

Fig. 3. Decision Tree generated model showing separation of grape populations in the 9-targeted (9-t) experiment.  
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trees in predicting and categorizing accessions within the two and nine 
expected populations. Naive Bayes and Naive Bayes Kernel retrieved an 
accuracy of 90.98% and 96.81% for 9-t and 2-t, respectively (Table 7). 
Riaz et al. [30] reported that the Bayesian analysis of the population 
structure did not have a clear separation between wild (sylvestris) and 
cultivated grapevines (sativa). While previous studies gave a poly
morphism pattern across the world grapevine populations, the present 
study has provided details on this diversity by assessing the effectiveness 
of the polymorphic loci in the characterization of those populations by 
employing useful machine learning methods. Although both Bayesian 
models (Naive base and Naive base kernel) have shown similar accu
racies in predicting the grapevine accessions, the Naive Bayes Kernel 
model appears to perform better when it is applied to the SVM dataset in 
2-t experiment, and PCA dataset in 9-t experiment (Table 7). 

SVM were even more successful than the Tree Induction and Naive 
Bayes algorithms in predicting and categorizing accessions among the 
two and nine expected populations for the 2-t and 9-t experiments. 

5. Conclusion 

To put it to sum up, various supervised algorithms were applied in 
this research to uncover the most suitable computational and analytical 
tools to identify groups of alleles with similar patterns in making precise 
discrimination among wild/cultivated and world grapevine accession 
based on SSR data. This study displayed that the SSR loci VVIh54-139 
and VVMD32-271 were more indicative attributes in classification 
among different subspecies of grapevine. This study for the first time 
shows that allele feature in combination with machine learning algo
rithms can effectively classify grapevine accessions of geographically 
separated accession of grapevines based on SSR profiles. 
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