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ABSTRACT
The measurement of precipitation is essential for most environ-
mental studies such as drought monitoring, watershed operations,
water hazard management, etc. Development of satellite products
has improved their applicability in environmental modelling and
could proffer an alternative to gauge-based precipitation data,
particularly in areas where there is no sufficient number of gauges
or poor gauge distribution but they should be evaluated in differ-
ent areas using ground-based data as references. In the present
study, daily Integrated Multi-satellitE Retrievals for the Global
Precipitation Measurement (GPM- IMERG- Final (Version 5)) and
Global Satellite Mapping of Precipitation-Moving Vector with
Kalman filter (GSMaP-MVK (Version 7)) precipitation products
were evaluated in comparison with gauges observations in
Ardabil province, north-west of Iran, from 1 January 2016 to 21
October 2017. Several statistical indices including linear correlation
coefficient, Bias (B), Multiplicative Bias (Bm), Relative Bias (Br), Mean
Absolute Error (MAE), Root Mean Square Error (RMSE), Probability
of Detection (POD), False Alarm Ratio (FAR) and Critical Success
Index (CSI) were used for evaluation. The results showed that the
correlation between GSMaP estimates and gauge observations is
higher than that of IMERG (0.42 and 0.33, respectively). On the
other hand, GSMaP tends to overestimate precipitation substan-
tially, while IMERG is involved in both under and overestimation
slightly. Although these products could not show very high accu-
racy in precipitation estimation, the estimated precipitation values
by IMERG were relatively closer to gauge records and can be used
as a replacement for gauge observation in the study area where
there is lack of weather stations.
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1. Introduction

The measurement of precipitation is essential for most environmental studies such as
drought monitoring (Bijaber et al. 2018), watershed operations (Kane et al. 2000), water
hazard management (Hermance and Sulieman 2018), etc. Moreover, precipitation is one
of the most important inputs for hydrological related models; therefore, an accurate
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estimate of precipitation is a great concern (Kurtzman, Navon, and Morin 2009; Li,
Zhang, and Xu 2012). Interpolation of gauges data can be used for conventional
estimates of real precipitation (Frei and Schar 1998; Luo, Xu, and Shi 2011; Zeinivand
2015). There are various interpolation methods (Guillermo, Tabios, and Salas 1985),
including Thiessen polygons (Thiessen 1911), inverse distance weighting (IDW)
(Watson and Philips 1985) and Kriging (Griffith 1988; Bailey and Gatrell 1995) which
are widely applied for estimation of precipitation (Keblouti, Ouerdachi, and Boutaghane
2012). Sometimes, application of these methods could yield incorrect results due to
topographical variation in the area and limited available gauge number (Sawunyama
and Hughes 2008). Moreover, their results can be affected by the heterogeneity of the
random fields (Ball and Luk 1998). In addition, most interpolation methods tend to
produce smooth output, which will affect the extreme value estimations (Skaugen and
Andersen 2010). On the other hand, sometimes, it is impossible economically to create
much more number of precipitation gauges. Recent development in satellite products
has improved their applicability in environmental modelling and could proffer an alter-
native to gauge-based estimates (Barrett et al. 1988; Sawunyama and Hughes 2008). The
main advantage of satellite-derived data is its temporal coverage and spatial variability,
which can be applied for successful hydrological analysis (Hossain et al. 2007). Up to this
point, several advanced satellite-derived precipitation retrieving products such as
Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA)
(Huffman et al. 2007), Precipitation Estimation from Remote Sensed Information Using
Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS) (Hong et al. 2007),
Climate Prediction Center (CPC) Morphing Technique Product (CMORPH) (Joyce et al.
2004), Global Satellite Mapping of Precipitation (GSMaP) (Okamoto et al. 2005; Kubota
et al. 2007), etc., have been generated. The TRMM successor, the Global Precipitation
Measurement (GPM) which was initiated by National Aeronautics and Space
Administration (NASA) and Japanese Aerospace Exploration Agency (JAXA) on 27
February 2014 from Tanegashima Space Center, Japan (Hou et al. 2014; Huffman,
Bolvin, and Nelkin 2015) has provided global precipitation products with higher spa-
tial/temporal resolution. As compared to TRMM, the capability of precipitation detection
by GPM Core Observatory is enhanced significantly because it has a greater number of
channels in the multi-channel GPM Microwave Imager (GMI) and the first space-borne
Ku/Ka-band Dual-Frequency Precipitation Radar (DPR) instruments. The DPR consists of a
Ka-band precipitation radar (KaPR at 35.50 GHz) and a Ku-band precipitation radar (KuPR
at 13.60 GHz) (Skofronick-Jackson et al. 2013). According to Skofronick-Jackson et al.
(2013) and Huffman, Bolvin, and Nelkin (2015), the DPR is more sensitive to light
precipitation rates and the overlapping of Ka/Ku -bands of the DPR provides more
accurate information on particle drop size. In addition, GMI covers a swath of 885 km
(in 10.00 GHz to 183.00 GHz frequency ranges). The frequencies used by GMI have been
optimized to retrieve precipitation in different severities (heavy, moderate, and light
precipitation) and falling snow by calculating the polarization difference at each channel
as well as a fully parametric approach using a Byaesian inversion (Kummerow et al.
2015). Since 12 March 2014, NASA has released Integrated Multi-satellitE Retrievals for
GPM (IMERG), providing half hourly multi-satellite precipitation product with a
0.10° × 0.10° spatial resolution which is expected to measure light precipitation (less
than 0.50 mm h−1) (Skofronick-Jackson et al. 2013). IMERG is designed to inter-calibrate,
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merge, and interpolate all microwave estimates of the GPM constellation, infrared
estimates, gauge observations, and other sensors data (Huffman et al. 2018).

Meanwhile, a precipitation retrieving algorithm was upgraded by JAXA using passive
microwave information from GMI and released the newest version of GSMaP (Version 6
and 7) (Okamoto et al. 2005; Kubota et al. 2007; Aonashi et al. 2009; Ushio et al. 2009).
Spatial and temporal resolutions of GSMaP are 0.10° × 0.10° and hourly, respectively.
Both IMERG and GSMaP are known as GPM-era satellite precipitation products (GSPPs).
The GSMaP algorithm consists of the following steps: 1) calculating the precipitation rate
from passive microwave sensors; 2) using Morphing technique to propagate precipita-
tion affected area; and 3) refining the estimated data using Kalman filter approach
(Aonashi et al. 2009). Moreover, the Japan Meteorological Agency Global Analysis
(JMAGANAL) data and Merged Satellite/in situ Global Daily Sea Surface Temperatures
(MGDSST) are used for the development of the algorithm as inputs (Chen and Li 2016). A
detailed explanation of GSMaP data formats and different sorts of this product can be
found in the work of Okamoto et al. (2005).

There are many studies on evaluation of satellite-based precipitation products through-
out the world (Chiu, Shin, and Kwaitkowski et al. 2006; Hong et al. 2007; Moazami et al. 2013;
Li, Zhang, and Xu 2014; Chen and Li 2016). As for IMERG and GSMaP, Chen and Li (2016) and
Ning et al. (2016) evaluated IMERG products in Mainland China on a monthly scale. Ning
et al. (2016) used GSMaP in addition to IMERG from April 2014 to November 2015 at daily/
monthly resolutions and reported that in terms of statistics, GSMaP was more able to
estimate precipitation than IMERG. Moreover, Xu, Shen, and Du (2016) and Tang et al.
(2016) used IMERG data for warm seasons in 2014 and 2015 which could not be generalized
for other seasons. Sharifi, Steinacker, and Saghafian (2016) compared IMERG with TRMM at
daily scale for 4 different regions of Iran and showed that IMERG generally had better
performance. Khodadoust Siuki, Saghafian, and Moazami (2017) evaluated IMERG and
TRMM hourly data in Khorasan Razavi province, Iran, and showed that IMERG had reason-
able agreement with the gauge-based observations. Krishna et al. (2017) compared IMERG
with TRMM (TMPA, also known as 3B42) inWestern Ghats of India and they reported that the
correlation coefficient of IMERG with gauge-based observations was higher. Ning et al.
(2017) compared IMERG and GSMaP data in several basins in China, from April 2014 to
March 2016. Their results showed that spatial distribution of total bias of both products was
different, but the GSMaP data generally had a higher accuracy than the IMERG. Prakash et al.
(2016) compared TMPA, IMERG and GSMaP with gauge-based observations in India with a
daily scale (June to September 2014). They reported that IMERG’s variability is more realistic
than TMPA and GSMaP data.

Satellite-derived precipitation products can present spatially steady measurement; how-
ever, their efficiency in hydrologic applications changes regionally due to several factors
including the algorithms used for retrieving, instrument features, survey time, etc. (Su, Hong,
and Lettenmaier 2008; Bitew and Gebremicheal 2011; Saber and Yilmaz 2016; Yoshinoto
and Amarnath 2016; Kim et al. 2016; Bajracharya, Shrestha, and Shrestha 2017).

Ardabil province located in north-west of Iran is a mountainous area with limited
precipitation gauge stations, particularly at high altitudes; thus, the aim of this study was
to compare precipitation gauge data with satellite-derived IMERG-Final (Version 5)
(IMERG database 2018) and GSMaP-MVK (Moving Vector with Kalman filter) (Version 7)
(GSMaP database 2018) precipitation products in daily scale (from 00:00:00 to 23:59:59)
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in Ardabil province (the data are mentioned as IMERG and GSMaP for conciseness
throughout the paper). It should be noted that the downloaded daily GSMaP data are
averaged daily data (mm h−1). To the best of the authors’ knowledge, there is no report
on evaluation of IMERG and GSMaP dataset in Iran including Ardabil Province.

2. Materials and methods

2.1. Study area

Ardabil province with an area of 1.80 million km2 is located north-west of Iran (Figure 1).
The elevation from sea level in the area varies from about 20 m to 4811 m. Two third of
the study area has mountainous texture with high altitude differences and the rest part
is plain and flat. According to the Ardabil Province Meteorological Organization’s statis-
tics, the western part of the area (Mt. Sabalan) has the highest average annual precipita-
tion (between 400 mm and 500 mm); but this amount is reduced in other parts and
reaches 350 mm in the south and 210 mm to 240 mm in the north of the province.
Moreover, average minimum and maximum temperatures in the study area are 1.50°C
and 20.50°C, respectively (Kakeh Mami et al. 2017; Aslami and Ghorbani, 2018).

2.2. Precipitation data

Although in the study area, there are no adequate gauges for precipitation measure-
ment, considering the aim of the study, gauge data were used as the reference for

Figure 1. The study area location, digital elevation model (DEM) and gauges locations.
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evaluation of satellite-derived precipitation products. According to their spatial distribu-
tion and the completeness of the desired data, a total of 27 gauges, including 10
synoptic and 17 precipitation stations were selected. Observed precipitation statistics
in daily scale from 1 January 2016 to 21 October 2017 were taken from the Ardabil
Province Meteorological Organization. On the other hand, IMERG and GSMaP data were
downloaded for the same period and time scales, in ‘.nc’ and ‘.csv’ formats, respectively.
As previously described, IMERG data enhanced capabilities to measure light precipita-
tion (less than 0.50 mm h−1) with 0.10° × 0.10° spatial resolution and 30 min temporal
resolution (Skofronick-Jackson et al. 2013; Huffman et al. 2014) and the newest versions
of GSMaP products use GMI tool of GPM. It should be noted that daily GSMaP data are
averaged data (mm h−1); therefore, they should be rescaled by 24 to be converted to
mm day−1.

2.3. Validation

Nine statistical indices were used to evaluate the performance of satellite-derived data
as compared to gauge records. The Bias, B, is the average difference between gauge
records and satellite-derived data (Equation (1)). Underestimations are shown with a
negative Bias and overestimations resulted in positive ones. Multiplicative Bias (Bm) is
defined as the ratio of satellite values and the observed values (gauges) (Equation (2)).
Bm values less than one show underestimation and greater than one show overestima-
tion. Relative Bias (Br) is the systematic bias of satellite-derived precipitation and could
be described as similar to the Bias (Equation (3)). Mean Absolute Error (MAE) presents
the average magnitude of the error (Equation (4)). Root Mean Square Error (RMSE) is
similar to MAE, but gives a greater weight to larger errors by showing the overall error
magnitude (Equation (5)). The correlation coefficient (r) presents the degree of agree-
ment between two data sets, ranging from – 1 to +1 and indicating perfect negative and
positive fit, respectively (Equation (6)). r will be close to 0 if there is no linear correlation
or a weak linear correlation (Moazami et al. 2013).

B ¼
PN

i¼1 PS; i � PO; i
� �

N
(1)

Bm ¼
PN

i¼1 PS; iPN
i¼1 PO; i

(2)

Br %ð Þ ¼
PN

i¼1 PS; i � PO; i
� �

PN
i¼1 PO; i

100 (3)

MAE ¼
PN

i¼1 PS; i � PO; i
�� ��
N

(4)

RMSE ¼
PN

i¼1 ðPS; i � PO; iÞ2
N

" #1=2

(5)
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r ¼
PN

i¼1 PS; i � �PS
� �

PO; i � �PO
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 PS; i � �PS

� �2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 PO; i � �PO

� �2q (6)

Where PS;i is the satellite-derived values for the ith daily event, PO;i is the value of gauge
for the ith daily event, N is the total number of daily precipitation events, PS is the
average of satellite-derived values for N daily events, and PO is the average value of
gauge observations for N daily events.

Three other statistical indices, Probability of Detection (POD), False Alarm Ratio
(FAR) and Critical Success Index (CSI) were also used to evaluate the precipitation
detection capabilities of satellite-derived data (Wilks 2006). POD shows the proportion
of the number of correct estimation of precipitation by satellite over precipitation
occurrences in gauges (Equation (7)). FAR represents the ratio of cases in which
precipitation is detected by satellite but not recorded in gauge (Equation (8)) and
CSI demonstrates the rate of precipitation events correctly detected by the satellite
(Equation (9)).

POD ¼ H
HþM

(7)

FAR ¼ F
Hþ F

(8)

CSI ¼ H
HþMþ F

(9)

Where H is the number of cases in which observed precipitation is correctly detected by
the satellite, M is the number of cases in which observed precipitation is not detected,
and F is the number of cases in which precipitation is detected but not observed in
gauges. POD, FAR, and CSI values range from 0.00 to 1.00, with 1 being a perfect POD
and CSI and 0 being a perfect FAR (Khodadoust Siuki, Saghafian, and Moazami 2017). In
the present study, a threshold of 0.50 mm day−1 was used to separate between
precipitation and no precipitation.

Overall, IMERG and GSMaP pixels (0.10°) having at least one gauge were used. A
larger number of gauges should give results that are more dependable and accurate.
The methods include comparison of the rate of daily precipitation detected in two
satellite-derived products with precipitation recorded in ground stations directly using
nine statistical indices, as described above.

3. Results

As shown in Figure 2, the average precipitation value on the daily scale is compared for
the gauges, IMERG, and GSMaP. For more clarity, the years are presented in two different
charts (2016 in Figure 2(a) and 2017 in Figure 2(b)). As shown, in most cases, GSMaP
remarkably overestimated the amount of precipitation in comparison with gauges.
However, IMERG showed both under and overestimation.

Figure 3(a,b) illustrates the scatter plots of daily precipitation for two satellite-derived
estimates versus the corresponding recorded gauge values. As shown in the figure, the
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correlation coefficient (r) among GSMaP estimates and gauge data is relatively higher as
compared to IMERG. The results of statistical evaluation seasonally and annually are also
presented in Table 1. Accordingly, the total values of B (mm day–1) and Bm confirm that
both GSMaP and IMERG overestimated precipitation (0.69 mm day–1 for B and 1.93 for
Bm of GSMaP; 0.02 mm day–1 for B and 1.25 for Bm of IMERG). MAE and RMSE values of
both IMERG and GSMaP also had remarkable differences with 0.10 and 0.83 for IMERG
and 1.31 and 3.87 for GSMaP, respectively. Considering POD values, comparison of the
two satellite-derived products showed that GSMaP data led to more accurate estimation
for detection of precipitation in contrast to FAR values. However, CSI is equal for both of

(a)

(b)

Figure 2. The average daily precipitation as measured by gauges, GSMaP and IMERG over (a) 2016
and (b) 2017.
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them. Seasonally, there are little differences among B and Bm values of IMERG as well as
GSMaP during all the seasons. However, Br of IMERG product during winter is 0.87% and
increased progressively during the following seasons. Such increased Br also can be seen
in GSMaP product after the spring. Moreover, the RMSE of both products is relatively
similar and is the smallest during summer. In all the seasons, the correlation coefficient
between GSMaP and gauge data is higher as compared to IMERG. With regards to POD,
GSMaP showed higher ability in detecting precipitation correctly during all the seasons.
Although CSI values of both products are rarely close to 1.00, it is about 0.90 during
summers, which is higher than other seasons.

Figure 4(a,b) demonstrates the spatial distribution of average daily Bm in the study
area where GSMaP tended to overestimate the precipitation across all (100%) selected
pixels (Bm >1.00). Also, about 96% of IMERG selected pixels tended to overestimate the
precipitation. According to Khodadoust Siuki, Saghafian, and Moazami (2017), if Bm lies
in the 0.75–1.20 range, the satellite-derived estimates would have reasonable agreement
with the gauge data. Therefore, as shown in Figure 4, GSMaP estimates were not within
the mentioned range (higher than 1.28), but IMERG revealed a relatively reasonable
congruence with the gauge data, as around 60% of the selected pixels accommodate
the Bm range. Although there is no gauge in altitudes above 2000 m (Figure 1), the
location of Bm rates of IMERG data at high altitudes particularly in the western part of the
area can be concluded as a good alternative to gauges to be developed in such
extremely impassable areas.

(a) (b)

Figure 3. Scatter plots of daily values for (a) IMERG and (b) GSMaP precipitation products.

Table 1. Statistical evaluation results.
Period Product B (mm day–1) Bm Br MAE RMSE r POD FAR CSI

Winter IMERG 0.01 1.01 0.87 1.25 2.75 0.28 0.88 0.18 0.74
GSMaP 0.44 1.44 44.34 1.43 4.32 0.38 0.90 0.14 0.79

Spring IMERG 0.22 1.32 31.46 1.07 2.39 0.23 0.88 0.23 0.70
GSMaP 0.30 2.13 43.15 0.99 2.82 0.35 0.91 0.22 0.73

Summer IMERG 0.03 1.35 35.09 0.14 0.79 0.31 0.97 0.09 0.89
GSMaP 0.09 4.96 109.12 0.17 0.99 0.46 0.98 0.11 0.88

Fall IMERG 0.41 1.44 43.47 1.24 3.52 0.44 0.92 0.13 0.81
GSMaP 1.83 2.95 195.30 2.29 5.51 0.50 0.96 0.29 0.69

Annual IMERG 0.02 1.25 24.46 0.10 0.83 0.33 0.91 0.16 0.78
GSMaP 0.69 1.93 92.72 1.31 3.87 0.42 0.94 0.18 0.78
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The spatial distribution of average POD values for both IMERG and GSMaP products
are illustrated in Figure 5(a,b). According to the figure, both satellite-derived estimates
have a relatively similar potential in detecting precipitation correctly. Although both
products did not show the highest POD for the western part of the study area, they
presented a reasonable performance.

Figure 6(a,b) indicates the spatial distribution of the average CSI values for IMERG and
GSMaP products. As can be observed, the CSI ranges are relatively similar in both products.
However, considering the pixels with the highest CSI values, both products revealed a great
potential in detecting precipitation in low-altitude areas located in the north of the study area,
while IMERG totally showed greater capability in detecting precipitation at high altitudes.

The main outcome of this study is displayed in Figure 7(a,b), where the average daily
satellite-derived precipitation is compared with the gauge records. The values in both
diagrams are in the order of highest to lowest for greater clarity. Based on this figure,
GSMaP frequently overestimated precipitation, occasionally up to about 30 mm, while there
is precipitation of about 15 mm in the gauge. On the other hand, a unique pattern cannot be
found among IMERG estimates and gaugeswhere IMERG frequently under and overestimated
the observed precipitation. Altogether, GSMaP product indicated lower capability in detecting
precipitation and presented a significant overestimation in comparison with the IMERG.

4. Discussion

In the present study, daily IMERG-Final (Version 5) and GSMaP-MVK (Version 7) precipita-
tion products were evaluated in comparison with gauges observations in Ardabil

Figure 4. Spatial distribution of Bm for (a) IMERG and (b) GSMaP over the study area.
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Figure 5. Spatial distribution of average daily POD for (a) IMERG and (b) GSMaP over the study area.

Figure 6. Spatial distribution of average daily CSI for (a) IMERG and (b) GSMaP over the study area.
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Province, north-west of Iran, from 1 January 2016 to 21 October 2017. Nine statistical
indices were used for uncertainty evaluation, which include linear correlation coefficient,
B, Bm, Br, MAE, RMSE, POD, FAR and CSI, in both seasonal and annual scales. It was found
that linear correlation among GSMaP precipitation estimates and gauge records is
higher as compared to IMERG. In annual scale, evaluation of B, Bm and Br showed that
both GSMaP and IMERG products tend to overestimate precipitation. On the other hand,
MAE and RMSE of both satellite-derived products have remarkable differences with
higher rates for GSMaP. According to the calculated values of POD, GSMaP showed
slightly higher capability than IMERG. On the seasonal scale, minor differences were
observed between B and Bm values of both satellite-derived products across all the
seasons. However, Br of IMERG during winter had the minimum value, while it increased
during the following seasons. Such an ascending trend in Br has been repeated for

Figure 7. Comparison of average daily (a) IMERG and (b) GSMaP precipitation values with gauge
data (gauge values are ordered from highest to lowest).

INTERNATIONAL JOURNAL OF REMOTE SENSING 11



GSMaP after the spring. Further, both products had the least RMSE during summer.
GSMaP had a better POD during all seasons. Also, both products had relatively similar
CSI values, which were higher in summer in comparison with other seasons. Finally, the
GSMaP product revealed less ability than the IMERG and had significant overestimation.
Moreover, IMERG had some heterogeneity with gauge records but it showed the
potential of use as precipitation source/input for other applications.

The results of this study showed that none of the satellite-derived products can estimate
precipitation with high accuracy; however, IMERG had better agreement with the gauge
records than GSMaP in the study area and can be a relatively good replacement for gauge
data in regions where there are no gauges, or poor spatial and temporal coverage by
gauges. The relatively good efficiency of IMERG data was underlined by other studies
(Sharifi, Steinacker, and Saghafian 2016; Krishna et al. 2017; Khodadoust Siuki, Saghafian,
and Moazami 2017). GSMaP substantially overestimated precipitation in this study, which is
contrary to the results Ning et al. (2016), Ning et al. (2017) reported in their study area, and
consistent with the findings of Prakash et al. (2016). Moreover, Islam (2018) found that
IMERG andGSMaP products correctly detected the occurrence of precipitation relatively but
could not estimate the accurate amount of precipitation in Bangladesh. With regards to the
mentioned examples and results of other studies in different parts of the world, comparison
between IMERG and GSMaP needs warrants further studies and consideration. In addition, it
highlights the importance of evaluating satellite-derived products before using them under
different environmental conditions. The results also indicated that using only one or two
statistical indices for such evaluations can lead to a biased or invalid conclusion or inter-
pretation (such as the correlation coefficient calculated in this study, which showed a higher
correlation for GSMaP data while some other statistical indices revealed opposite results).
Therefore, the use of several statistical indices helps experts to interpret their result more
accurately. Forasmuch as GPM is a new tool, some challenging issues in its performance in
different regions and different applications such as hydrological models will continue to
remain open for future studies.
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