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ABSTRACT
In this article, we utilize a form of general linear model where missing
data occurred randomly on the covariates. We propose a test function
based on the doubly robust method to investigate goodness of fit of
the model. For this aim, kernel method is used to estimate unknown
functions under estimating equation method. Doubly robustness and
asymptotic properties of the test function are obtained under local and
alternative hypotheses. Furthermore, we investigate the power of the
proposed test function bymeans of some simulation studies and finally
we apply this method on analyzing a real dataset.

1. Introduction

We are always seeking ways to describe the relationships amongmany phenomena. By know-
ing these relationships, we can predict and program about the future events. Linear model
is one of the most common approaches to determine relationships among phenomena. A
general linear model represents relation between a response Y and the covariate vector X of
dimensionm and has the following form:

Y = φT (X )β + ε, (1)

where φ(·) is a known vector function of dimension p, β is an unknown parameter vector
of dimension p, and ε is the sampling error with constant variance. Also, it is assumed that
E(ε|X = x) = 0 and E(ε2|X = x) < ∞. Simple linear model φ(X ) = X , is a special case of
the general linear model. General linear model is more flexible than simple linear model since
it allow us to inference about higher order and more complex models.

In statistical studies, it is necessary to check the validity of specified model to prevent us to
give wrong conclusions. In studies without missing values (complete sample studies), Hardle
and Mammen (1993) and Hardle et al. (1998) considered testing goodness of fit of the gen-
eral linear model by nonparametric and semiparametric methods, respectively. Also, when
covariates are measured with error, Zhu and Cui (2005) proposed a score-type test function
to check goodness of fit of the general linear model.
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2 F. BAHARI ET AL.

In practice, we always have the problem of missing data, which affect statistical inferences.
By using advance statistical and computational tools, some methods are proposed to solve
the missing data problem. Dealing with missing data problem has also become easier because
of classification of missing data mechanism in three groups by Rubin (1976). In our case,
we assume that missing mechanism to be missing at random (MAR) as introduced in Rubin
(1976). Furthermore, we assume missing data occur just in some covariates and the response
variable is completely observed.

Some authors have assumed that response variableY to be missing and they have checked
goodness of fit of the model. In this case, among the authors, Manteiga and Gonzalez (2006)
andXue (2009) have proposed some test functions based on score-type test function ofHardle
et al. (1998). Moreover, Guo and Xu (2012) constructed a test function when some covariates
are missing at random. In mentioned literatures usually missed part of data is ignored from
estimating equation models and the test functions. Here, we consider estimating models that
involve partly missed data and we construct a test function based on partly missed data.

In this article, at first we introduce some methods based on estimating equations method
to obtain parameter estimators of a general linear model in the presence of missing data. In
the next section, we evaluate our doubly robust test function and we determine its properties.
In Section 4, we see the performance of our test statistic based on some simulation studies.
In the final section, we use this test function to clarify the goodness of fit of the general linear
model by analyzing a real dataset.

2. Methods for estimating parameters of a linear model based on estimating
equationsmethod

Whenwe have the complete data, parameters of the general linearmodel are usually estimated
using the following estimating equations:

n∑
i=1

Sβ (yi|xi) = 0, (2)

where Sβ (·|·) is called score function and it can be the derivative of log-likelihood function, the
derivative of sum of squared errors, etc. Using the complete case (CC) method is the simplest
method to estimate parameters of a linear model when some parts of covariate X are missing.
In this method, missing data completely are discarded. Therefore, partly observed data have
no role in the estimation of parameters of the linear model. The parameters’ estimates are
obtained by solving the following equations:

n∑
i=1

δiSβ (yi|xi) = 0, (3)

where δi is one if the ith individual of data is observed completely and it is zero, otherwise.
However, when the missing mechanism is MAR, complete case method gives the bias esti-
mators of the parameters. To solve this problem, Zhao and Lipsitz (1992) proposed inverse
probability weight (IPW) method. They showed that estimators of IPWmethod are unbiased
under MAR assumption. In this method, parameters are obtained by solving the following
equations:

n∑
i=1

δi

π(vi)
Sβ (yi|xi) = 0, (4)
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where for the ith individual, π(vi) is the probability of observing ith data conditional on the
observed data, that is,

π(vi) = P(δi = 1 | yi, xi) = P(δi | yi, zi) = P(δi | vi), (5)

where xi = (ui, zi) and vi = (yi, zi). The vector zi includes the fully observed covariates, the
vector ui includes the partly observed covariates, and vi includes the fully observed dataset.
This method gives the unbiased estimators of the parameters but it does not use partly missed
data. To solve this problem, Robins et al. (1994, 1995) have proposed the following method
to estimate parameters of the linear model:

n∑
i=1

[
δi

π(vi)
Sβ (yi|xi, zi) +

(
1 − δi

π(vi)

)
S∗

β (vi)

]
= 0, (6)

where S∗
β (vi) = E(Sβ (yi|xi) | V = vi). Since S∗

β (v ) is the expectation of score function and the
inverse probability of observing a datum is used to estimate parameters of the linear model in
Eq. (6), this method is called weighted mean score (WMS) method. In WMS method, π and
S∗ are unknown functions and they need to be estimated. If one of the unknown values of π
or S∗ specified correctly, then the estimators remain unbiased. Therefore, mean score method
is called a doubly robust (DR) method. The unknown values, π and S∗ can be estimated in
different ways. Wang et al. (1997) and Wang and Wang (2001) have proposed kernel method
to estimate these unknown functions. They have estimated these unknown functions by the
following estimators:

π̂ (v ) =
∑n

i=1 δiKh(vi − v )∑n
i=1 Kh(vi − v )

, (7)

Ŝ∗(vi) =
∑n

j=1 δ jSβ (y j|x j)Kh(v j − vi)∑n
j=1 δiKh(v j − vi)

, (8)

where Kh(·) is a kernel function with smoothing parameter h. Also, Creemers et al. (2011)
have used the following estimator to estimate S∗:

Ŝ∗(vi) =
∑n

j=1 δiSβ (yi|uj, zi)Kh(v j − vi)∑n
j=1 δiKh(v j − vi)

, (9)

where, in this method, the observed part of the data is used in the estimators. To see the
difference between estimators in Eqs. (8) and (9), we refer to Creemers et al. (2011).

For more methods about analyzing linear models with missing covariates, also see Little
(1992) andCreemers et al. (2011). Another question that remains to think about after estimat-
ing parameters of a general linear model is the validity of the fitted model. To test goodness
of fit of the model, Guo and Xu (2012) and Bianco et al. (2013) used IPW method and con-
structed a test function by using errors. They have considered the following hypotheses:

H0 : Y = φT (X )β + ε vs. H1 : Y = φT (X )β +CnG(X ) + ε, (10)

where Cn is a real value constant and G(·) is an unknown function of covariates. In above
hypotheses, if Cn = C, a constant, the hypothesis is called fixed or global alternative hypoth-
esis; ifCn → 0, as n → ∞, it is called local alternative hypothesis.

To investigate above hypotheses, Guo and Xu (2012) have used IPW method to estimate
parameters of the linear model and they have proposed a test function based on errors of this
model as follows:
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4 F. BAHARI ET AL.

Tn = 1√
n

n∑
i=1

δi

π(vi)
(yi − φ(xi)β̂ ). (11)

They have shown that Tn tends to a variable with Normal distribution with mean,
μn = −√

nCn(E(G(X )) − E(φ(X ))�−1E(φ(X )G(X ))) and variance, Vn = E( 1
π(V )

ε2((1 −
E(φT (X ))�−1φ(X ))2 − (1 − 1

π(V )
)((E(ε|V ) − E(φT (X ))�−1E(φ(X )ε|V ))2), where � =

E(φT (X )φ(X )). Also, we have modified the variance of their test function by using the same
method of them. Their proposed test function have good properties such as E(Tn) = 0 under
null hypothesis but this test function ignores the partly observed data as does the IPWmethod
in the estimation of linear model parameters.We call their test function as test function based
on inverse probability weights (TFIPW). In TFIPW method, we lose partly missed observa-
tions. So, to solve this problem and improve the TFIPW method, we propose a test function
that uses partly missed data based on WMS method to check the goodness of fit of general
linear models.

3. Main results

We proposed a test function based on errors that includes incomplete data (as the WMS
method does) in the test function as

T = 1√
n

n∑
i=1

[
δi

π̂ (vi)
ei + (1 − δi

π̂ (vi)
)e∗i

]
, (12)

where ei = yi − φ(xi)β̂ and e∗i = yi − φ̂∗(vi)β̂ with φ∗(vi) = E(φ(Xi)|Vi = vi). Above test
function has mean zero if at least one of the two unknown components, π̂ (v ) or φ̂∗(v )

is correctly specified. Therefore, if π(·) and φ(·) are estimated parametrically, T will
have the doubly robustness property as WMS method. However, we will estimate them
nonparametrically.

In Eq. (12), it is supposed that β̂ is obtained by WMS method. So in this case, if unknown
functions are obtained by similar manner as Eq. (8), we will call proposed test function as
test function based on Wang (TFW). On the other hand, if unknown functions are obtained
by similar way to that of Eq. (9), we will call proposed test function as test function based
on Creemers (TFC). Also in our proposed test functions, φ∗(v ) andG∗(v ) = E(G(X )|V ) are
unknown. Therefore, we will estimate them in a similar way to S∗ in Eqs. (8) and (9) for test
functions TFW and TFC, respectively.

To achieve our conclusions, we assume that regularity conditions to be hold as mentioned
in Wang and Wang (2001). These conditions are:

(1) π(v ) is bounded and has partial derivatives up to order 2 almost surely.
(2) Kernel function kh(.) is continuous and is from order r. It is always at least from

order 2.
(3) The density function of V, f (v ), exists and has bounded derivatives up to at least

order 2.
(4) The conditional expectations E(S|V = v ) and E(SST |V = v ) exist and have r contin-

uous and bounded partially derivatives with respect to v .
(5) For the score function S, E(SST ) exists and is positive definite.
(6) ηn = [nh2r + (nh2d )−1] converges to zero as n converges to infinity. Where d is the

dimension of the vectorV .
By using following lemma, we can obtain properties of our proposed test function.
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Lemma 3.1. If the regularity conditions hold,
(a) Under local hypothesis:

√
n(β̂ − β) = �−1

{
1√
n

n∑
i=1

[
δi

π(vi)
φ(xi)εi +

(
1 − δi

π(vi)

)
φ∗(vi)ε∗

i

]}
+ Op(ηn)

(13)
where � = E(φT (X )φ(X )) and ε∗ = E(ε | v ).

(b) Under alternative hypothesis:

√
n(β̂ − β) = �−1

{
1√
n

n∑
i=1

[
δi

π(vi)
φ(xi)εi +

(
1 − δi

π(vi)

)
φ∗(vi)ε∗

i

]

+ √
nCnE(φ(X )G(X ))

}
+ Op(ηn) (14)

Theorem 3.1. If the regularity conditions hold,
(a) Under the local hypothesis:

T ∼ N(0,V ) (15)

where V = E[ δ

π(V )
ε(1 − E(φ(X ))T�−1φ(X )) + (1 − δ

π(V )
)ε∗(1 − E(φ(X ))

�−1φ∗(V ))]2.
(b) Under the alternative hypothesis:

T ∼ N(μ,V ) (16)

where μ = −√
nCn[E(G(X )) − E(φ(X ))�−1E(φ(X )G(X ))].

The proofs of above lemma and theorem are given in the appendix. Also the estimator of
the unknown function can be found among the proofs in the appendix.

4. Simulation study

Some simulations are performed in three studies to investigate the performance of our pro-
posed test function versus TFIPW. To achieve this aim, standard normal kernel function is
used to estimate unknown functions and cross-validationmethod is used to determine band-
width h. Two different sample sizes, n = 100, 50, are used to observe the sample size effect on
the problem. Any stage of study is repeated 1,000 times and the empirical powers of the test
functions are given in Tables 1–3.

Study 1. The data are generated from the following model,

Y = φT (X )β +CnG(X ) + ε, (17)

whereφ(X ) = (1 + X2)withX ∼ U (0, 1),G(X ) = sin(2πX ), and ε ∼ N(0, 0.25). Asmen-
tioned before we assume that covariate X contains missing data with the following missing at
random mechanisms:

Case 1. π1(y) = 1/(1 + |y|exp(−y)),
Case 2. π2(y) = 1/(1 + exp(−y2)).
For abovemissingmechanisms, it is expected thatE(π1) � 0.78 andE(π2) � 0.79, respec-

tively. Figure 1 shows the curve of Y versus X . Where the dashed curve represents the curve
under the null hypothesis and the solid curves represent the curves under the alternative
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6 F. BAHARI ET AL.

Table . Empirical powers under sample sizes  and  for different values ofCn in study .

Case  Case 

n=  n=  n=  n= 

Cn TFIPW TFW TFC TFIPW TFW TFC TFIPW TFW TFC TFIPW TFW TFC

. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .

Table . Empirical powers under sample sizes  and  for different values ofCn in study .

Case  Case 

n=  n=  n=  n= 

Cn TFIPW TFW TFC TFIPW TFW TFC TFIPW TFW TFC TFIPW TFW TFC

. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .

hypothesis. The solid curves keep out from the dashed curve asCn vary from 0 to 2. Therefore,
we can expect that the power of the proposed test function can be increased by increasingCn.

The empirical powers of the test functions under Study 1 are given in Table 1. FromTable 1,
it is seen that the power of the test functions converge to 1 asCn vary from 0 to 1. The power

Table . Empirical powers under sample sizes  and  for different values ofCn in study .

Case  Case 

n=  n=  n=  n= 

Cn TFIPW TFW TFC TFIPW TFW TFC TFIPW TFW TFC TFIPW TFW TFC

. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
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COMMUNICATIONS IN STATISTICS—SIMULATION AND COMPUTATION® 7

Figure . General linear model for different values of Cn. The dashed curve represents the curve under
null hypothesis (Cn = 0) and the solid curves represent the curves under alternative hypothesis (Cn =
0.05, 0.10, . . . , 1).

of the test functions are affected by sample size. Where the bigger the sample size, the bigger
the power of rejection. On the other hand, the power performance has not affected bymissing
mechanisms. Also fromTable 1, we can conclude that all the test functions have approximately
the same power of rejection for the same percentage of missing in covariate of the general
linear model.

Study 2. In this case, new covariate is added to the linear model. So, the data are generated
from the model,

Y = φT (X )β +CnG(X ) + ε, (18)

where φ(X ) = (1 + X2
1 ,X2) with X1 ∼ U (0, 1), X2 ∼ U (0, 1), G(X ) = sin(2πX2), β =

(2, 1), and ε ∼ N(0, 0.25). We assume that missing data occur in X1 from the following
mechanisms:

Case 3. π3(v ) = 1/(1 + | 0.75x2
(y+x2)

|),
Case 4. π4(v ) = 1/(1 + | 3x2

(y+x2)
|).

In the above cases, the observed full data are in the rates E(π3(v )) � 0.83 and E(π4(v )) �
0.59, respectively. The results of study 2 are given in Table 2. In case 3 where, missing rate is
not high, all the three test functions have approximately the same power of rejection but asCn

becomes bigger, TFC rejects null hypothesis with more probability in comparison with those
of the two other test functions. In case 3, when sample size decreases to 50, TFIPW and TFC
remain acceptable but TFW rejects null hypothesis near the 0 with the bigger probability. In
case 4, where missing rate increases to 41%, TFW shows week conclusions near the Cn = 0.
On the other hand, TFC shows better performance in comparison with those of the two other
test functions. Also by decreasing sample size to 50, the increase in power of TFC is seenmore
clearly.

Study 3. The data are generated from the following model,

Y = φT (X )β +CnG(X ) + ε, (19)
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8 F. BAHARI ET AL.

where φ(X ) = (1 + X2
1 ,X2,X3)withX1 ∼ U (0, 1),X2 ∼ N(0, 0.25),X3 ∼ U (0, 1),G(X ) =

(X1 + X2 + X3)
2/4, β = (2, 1, 2), and ε ∼ N(0, 0.25). In this case, we assume that missing

data occur in X1 and X2 from the following mechanisms:

Case 5.
{
π51(v ) = 1/(1 + exp(−(y + x2 − 0.25x3)))
π52(v ) = 1/(1 + |0.5y|exp(−(0.75y + x1 + x3)))

Case 6. π6 = 1/(1 + 0.5|y + x3|exp{−0.5(y + x3)}))
where in case 5, 1 − π51 is the probability that variable X1 is missing, while 1 − π52 is the
probability that variable X2 is missed, given that the variable X1 is observed. Therefore, vari-
ables X1 and X2 may not be missing at the same time. The probability of missing does not
depend on the missed values, therefore, the missing data mechanism is MAR. In case 5, by
abovemissingmechanism, we will have 6 and 4 percentage of missing data in variablesX1 and
X2, respectively. Therefore, in case 5, we will have approximately 90% fully observed data. In
case 6, π6 is the probability of observing data in both variablesX1 and X2. Therefore, in case 6,
both variables X1 and X2 are missed or both are observed. By π6, we expected approximately
80% of fully observed data.

The results of study 3 are given inTable 3. FromTable 3, by increasing the number ofmissed
covariates, TFW gives weak results but TFIPW and TFC stay valid. As we expected, TFIPW
and TFC have small powers for small values of Cn and have big powers for big values of Cn.
From Table 3, we can conclude that TFC is more powerful than TFIPW. Also this fact can be
seen for the low sample size (n = 50) and the more percentage of missingness (41%) of the
case 6.

5. Real data study

Weuse our proposed test functions to determine fitness of linearmodel tomono-zygotic twins
data in Lee and Scott (1986). Where response Y represents birth weights of a baby, covariate
X1 represents abdominal circumference of a baby, and X2 represents bi-parietal diameter of
a baby. This dataset is also used by Xue (2009) and Guo and Xu (2012) to determine the
performance of their methods in linear model with missing data.

Figure 2 represents scatter plot of response Y versus X1 and X2 from right to left, respec-
tively. Alsowe standardized the data, where sample size is 50. Fromfigures, we fit the following
linear model:

E(Y |X ) = φT (X )β, (20)

Figure . Scatter plot ofY versus X1 and X2 from right to left, respectively.
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COMMUNICATIONS IN STATISTICS—SIMULATION AND COMPUTATION® 9

Table . p-Value for different values of a.

a Missing percentage TFW TFC

.  . .
.  . .
.  . .
.  . .
.  . .
.  . .
.  . .
.  . 
.  . .

where φ(X ) = (X1,X2) and β is an unknown vector parameter. Also we use the following
mechanism for missing data at covariate X1,

π(v ) = 1/(1 + a|y + x2|), (21)

where a is a known constant to make different percentage of missing. Results of this study is
given for different values of a in Table 4. Table 4 represents missing percentage and p-value
for TFW and TFC. The p-values give evidence for goodness of fit of the models with different
values of a.

6. Discussion

TFIPW has a good performance for low percentage of missingness and its results are accept-
able but we should be careful when sample size is not large, missing rate is high, and the
number of covariates is high. On the other hand, TFW has a good performance for low rate
of missing and large number of data but it has a week performance in other cases. Also the
more developed version of it, TFC, has a very good performance for all cases, that is, when
the missing rate is high, sample size is large, and the number of covariate is high. For all cases,
this method is more powerful than TFIPW.

Appendix: Proof of lemma and theorem

In our proofs, we need asymptotic properties of π̂i and φ̂∗
i . Since E(φ̂∗(vi)) = φ∗(vi) +

Op(hr), Var(φ̂∗(vi)) = Op(
1

nhd ), E(π̂ (vi)) = π(vi) + Op(hr), and Var(π̂ (vi)) = Op(
1

nhd ),
then by Chebyshev inequality we conclude that

φ̂∗(vi) = φ∗(vi) + OP(ηn), (A.1)

π̂ (vi) = π(vi) + OP(ηn). (A.2)

Proof of lemma

In proof of lemma, it is enough to proof the part b, because the part (a) is the results of the
part (b) by tackingCn = 0. Note that

√
n(β̂ − β) =

{
1
n

n∑
i=1

[
δi

π̂ (vi)
φ(xi)φT (xi) +

(
1 − δi

π̂ (vi)

)
φ̂∗(vi)φ̂∗T (xi)

}−1
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10 F. BAHARI ET AL.

.

{
1√
n

n∑
i=1

[
δi

π̂ (vi)
φ(xi)(yi − φ(xi)β) +

(
1 − δi

π̂ (vi)

)
φ̂∗(vi)(yi − φ̂∗(vi)β)

]}
= A−1B.

(A.3)

Since, φ̂∗(vi) = φ∗(vi) + OP(ηn), we have

A = 1
n

n∑
i=1

[
δi

π̂ (vi)
φ(xi)φT (xi) +

(
1 − δi

π̂ (vi)

)
φ∗(vi)φ∗T (xi) + OP(ηn). (A.4)

Therefore by expanding sub-function of sigma about π(vi) with respect to π̂ (vi) in (A.2), we
will have

A = 1
n

n∑
i=1

[
δi

π(vi)
φ(xi)φT (xi) +

(
1 − δi

π(vi)

)
φ∗(vi)φ∗T (xi)

]

+ 1
n

n∑
i=1

δi

π 2(vi)
(π(vi) − π̂ (vi))(φ(xi)φT (xi) − φ∗(vi)φ∗T (xi)) + OP(ηn)

= A1 + A2 + OP(ηn). (A.5)

By SLLN

A1 = E(φ(X )φT (X )) + op(1) = � + op(1). (A.6)

And for A2 we have

A2 = 1
n

n∑
i=1

δi

π 2(vi)
(π(vi) − π̂ (vi))(φ(xi)φT (xi) − φ∗(vi)φ∗T (xi)) + OP(ηn)

= 1
n

n∑
i=1

δi

π 2(vi)
(φ(xi)φT (xi) − φ∗(vi)φ∗T (xi))

∑n
j=1(π(vi) − δ j)Kh(vi − v j)

n f̂ (vi)
+ OP(ηn).

(A.7)

It is easily concluded that

A2 = 1
n

n∑
i=1

π(vi) − δi

π(vi)
[E(φ(X )φT (X ) | zi) − E(φ∗(X )φ∗T (X ) | zi)] + OP(ηn)

= 1
n

n∑
i=1

π(vi) − δi

π(vi)
[E(φ(X )φT (X ) | zi) − φ∗(X )φ∗T (X )] + OP(ηn). (A.8)

Formore details about above conclusion see also similar conclusion inWang andWang (2001,
pp. 447–448). So, from Eq. (A.8) we conclude that

A2 = Op(ηn). (A.9)

Therefore, from Eqs. (A.5), (A.6), and (A.9) it can be concluded that

A = � + Op(ηn). (A.10)
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COMMUNICATIONS IN STATISTICS—SIMULATION AND COMPUTATION® 11

Since, φ̂∗(vi) = φ∗(vi) + OP(ηn), we have

B =
{

1√
n

n∑
i=1

[
δi

π̂ (vi)
φ(xi)(yi − φ(xi)β) +

(
1 − δi

π̂ (vi)

)
φ∗(vi)(yi − φ∗(vi)β)

]}
+ OP(ηn)

=
{

1√
n

n∑
i=1

[
δi

π̂ (vi)
φ(xi)(εi +CnG(xi)) +

(
1 − δi

π̂ (vi)

)
φ∗(ε∗

i +CnG∗(vi))
]}

+ OP(ηn)

=
{

1√
n

n∑
i=1

[
δi

π̂ (vi)
φ(xi)εi +

(
1 − δi

π̂ (vi)

)
φ∗ε∗

i

]}

+
{

1√
n

n∑
i=1

[
δi

π̂ (vi)
φ(xi)CnG(xi) +

(
1 − δi

π̂ (vi)

)
φ∗CnG∗(vi)

]}
+ OP(ηn). (A.11)

Therefore by expanding sub-function of sigma about π(vi) with respect to π̂ (vi), we have

B =
{

1√
n

n∑
i=1

[
δi

π(vi)
φ(xi)εi +

(
1 − δi

π(vi)

)
φ∗(vi)ε∗

i

}

+
{

1√
n

n∑
i=1

[
δi

π(vi)
φ(xi)CnG(xi) +

(
1 − δi

π(vi)

)
φ∗(vi)CnG∗(vi)

}

+ 1√
n

n∑
i=1

[
δi

π 2(vi)
(φ(xi)(yi − φ(xi)β) − φ∗(vi)(yi − φ∗(vi)β))(π̂ (vi)

− π(vi) + OP(ηn) = B1 + B2 + OP(ηn). (A.12)

By SLLN for B1 we have

B1 =
{

1√
n

n∑
i=1

[
δi

π(vi)
φ(xi)εi +

(
1 − δi

π(vi)

)
φ∗(vi)ε∗

i

}

+
{

1√
n

n∑
i=1

[
δi

π(vi)
φ(xi)CnG(xi) +

(
1 − δi

π(vi)

)
φ∗(vi)CnG∗(xi

}

=
{

1√
n

n∑
i=1

[
δi

π(vi)
φ(xi)εi +

(
1 − δi

π(vi)

)
φ∗(vi)ε∗

i

}
+ √

nCnE(φ(X )G(X )) + op(1).

(A.13)

For B2, it can easily be concluded similar to Eq. (A.7) that

B2 =
{

1√
n

n∑
i=1

[
δi

π 2(vi)
(φ(xi)(yi − φ(xi)β) − φ∗(vi)(yi − φ∗(vi)β))

×
∑n

j=1(φ(xi) − δ j)Kh(vi − v j)

n f̂ (vi)

= 1√
n

n∑
i=1

π(vi) − δi

π(vi)
E(φ(xi)(yi − φ(xi)β) − φ∗(vi)(yi − φ∗(vi)β) | vi) + OP(ηn)

D
ow

nl
oa

de
d 

by
 [

Fa
yy

az
 B

ah
ar

i]
 a

t 0
1:

13
 0

1 
D

ec
em

be
r 

20
17

 



12 F. BAHARI ET AL.

= 1√
n

n∑
i=1

π(vi) − δi

π(vi)
[φ∗(vi)yi − E(φφ | vi)β − φ∗(vi)yi + φ∗(vi)φ∗T (xi)β] + OP(ηn)

= 1√
n

n∑
i=1

π(vi) − δi

π(vi)
[φ∗(vi)φ∗T (xi) − E(φ(X )φT (X ) | vi)]β + OP(ηn) = OP(ηn).

(A.14)

Therefore from Eqs. (A.13) and (A.14), we can conclude that

B =
{

1√
n

n∑
i=1

[
δi

π(vi)
φ(xi)εi +

(
1 − δi

π(vi)

)
φ∗(vi)ε∗

i

}
+ √

nCnE(φ(xi)G(xi)) + OP(ηn).

(A.15)
Finally, the part (b) of lemma can be concluded from Eqs. (A.10) and (A.15). As mentioned
before, the part (a) can be concluded as the part (b) by tackingCn = 0.

Proof of theorem

The test function is

T = 1√
n

n∑
i=1

δi

π̂ (vi)
(yi − φ(xi)β̂ ) +

(
1 − δi

π̂ (vi)

)
(yi − φ̂∗(vi)β̂ ), (A.16)

since φ̂∗(vi) = φ∗(vi) + OP(ηn), then we can write T as

T = 1√
n

n∑
i=1

δi

π̂ (vi)
(yi − φ(xi)β̂ ) +

(
1 − δi

π̂ (vi)

)
(yi − φ∗(vi)β̂ ) + OP(ηn). (A.17)

Also T can be written as below:

T = 1√
n

n∑
i=1

δi

π̂ (vi)
(yi − φ(xi)β) +

(
1 − δi

π̂ (vi)

)
(yi − φ∗(vi)β)

− 1√
n

n∑
i=1

δi

π̂ (vi)
φ(xi)(β − β̂ ) +

(
1 − δi

π̂ (vi)

)
φ∗(vi)(β − β̂ ) + OP(ηn).(A.18)

Now, we expand T about π(vi), with respect to π̂ (vi):

T = 1√
n

n∑
i=1

[
δi

π(vi)
(yi − φ(xi)β) +

(
1 − δi

π(vi)

)
(yi − φ∗(vi)β)|

]

− 1√
n

n∑
i=1

[
δi

π(vi)
φ(xi)(β − β̂ ) +

(
1 − δi

π(vi)

)
φ∗(vi)(β − β̂ )|

]

+ 1√
n

n∑
i=1

[
δi

π 2(vi)
(yi − φ(xi)β) − δi

π 2(vi)
(yi − φ∗(vi)β)][π(vi) − π̂ (vi)|

]

− 1√
n

n∑
i=1

[
δi

π 2(vi)
φ(xi)(β − β̂ ) − δi

π 2(vi)
φ∗(vi)(β − β̂ )

]
[π(vi) − π̂ (vi)] + OP(ηn)

= T1 + T2 + T3 + T4 + OP(ηn). (A.19)
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For T1 we have

T1 = 1√
n

n∑
i=1

[
δi

π(vi)
(yi − φ(xi)β) +

(
1 − δi

π(vi)

)
(yi − φ∗(vi)β)

]

= 1√
n

n∑
i=1

[
δi

π(vi)
εi +

(
1 − δi

π(vi)

)
ε∗
i )

]

+
{

1√
n

n∑
i=1

[
δi

π(vi)
CnG(xi) +

(
1 − δi

π(vi)

)
CnG∗(xi)

]

=
{

1√
n

n∑
i=1

[
δi

π(vi)
εi +

(
1 − δi

π(vi)

)
ε∗
i

}
+ √

nCnE(G(X )) + op(1). (A.20)

We can rewrite T2 as follows:

T2 = −1
n

n∑
i=1

[
δi

π(vi)
φ(xi) +

(
1 − δi

π(vi)

)
φ∗(vi)

][√
n(β − β̂ )

]
(A.21)

and by using part (b) of lemma, we can write T2 as

T2 = −1
n

n∑
i=1

[
δi

π(vi)
φ(xi) +

(
1 − δi

π(vi)

)
φ∗(vi)

]

.

[
�−1

{
1√
n

n∑
i=1

[
δi

π(vi)
φ(xi)εi +

(
1 − δi

π(vi)

)
φ∗(vi)ε∗

i

]

+ √
nCnE(φ(X )G(X ))

}]
+ Op(ηn). (A.22)

So, we rewrite T2 as

T2 = −E(φ(Xi))�
−1

{
1√
n

n∑
i=1

[
δi

π(vi)
φ(xi)εi +

(
1 − δi

π(vi)

)
φ∗(vi)ε∗

i

]

+ √
nCnE(φ(X )G(X ))|

}
+ Op(ηn). (A.23)

For T3, we have

T3 = 1√
n

n∑
i=1

[
δi

π 2(vi)
(yi − φ(xi)β) − δi

π 2(vi)
(yi − φ∗(vi)β)][π(vi) − π̂ (vi)

]

= 1√
n

n∑
i=1

δi

π 2(vi)
[(φ∗(vi) − φ(xi))β)][π(vi) − π̂ (vi)]

= 1√
n

n∑
i=1

[
δi

π 2(vi)
([(φ∗(vi) − φ(xi))β))

∑n
j=1(π(vi) − δ j)Kh(vi − v j)

n f̂ (vi)

]
. (A.24)
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14 F. BAHARI ET AL.

Similar to Eq. (A.7), we can write T3 as below:

T3 = 1√
n

n∑
i=1

[
π(vi) − δi

π(vi)
βE(φ∗(vi) − φ(xi) | vi)

]
+ Op(ηn)

= 1√
n

n∑
i=1

[
π(vi) − δi

π(vi)
β(φ∗(vi) − φ∗(vi)

]
+ Op(ηn) = Op(ηn). (A.25)

And we can write T4 as

T4 =
[√

n(β̂ − β)
] 1
n

n∑
i=1

[
δi

π2(vi)
[φ(xi) − φ∗(vi)][π(vi) − π̂ (vi)

]

=
[√

n(β̂ − β)
] 1
n

n∑
i=1

[
δi

π2(vi)
[φ(xi) − φ∗(vi)]

[∑n
j (π(vi) − δ j)Kh(vi − v j)

n f̂ (vi)

]
. (A.26)

Similar to Eq. (A.7), we can write

T4 =
[√

n(β̂ − β)
] {

1
n

n∑
i=1

[
π(vi) − δi

π(vi)
[E(φ(xi) | vi) − E(φ∗(vi) | vi)

]}
+ Op(ηn)

=
[√

n(β̂ − β)
] {

1
n

n∑
i=1

[
π(vi) − δi

π(vi)
[φ∗(vi) − φ∗(vi)

]}
+ Op(ηn) = Op(ηn). (A.27)

Therefore, by Eqs. (A.20), (A.23), (A.25), and (A.27), we can write T as

T = T1 + T2 + T3 + T4 + OP(ηn) =
{

1√
n

n∑
i=1

[
δi

π(vi)
εi +

(
1 − δi

π(vi)

)
ε∗
i

}
+ √

nCnE(G(X ))

−E(φ(Xi))�
−1

{
1√
n

n∑
i=1

[
δi

π(vi)
φ(xi)εi +

(
1 − δi

π(vi)

)
φ∗(vi)ε∗

i

]

+ √
nCnE(φ(X )G(X ))

}
+ Op(ηn), (A.28)

and we can rewrite T as follows:

T =
{

1√
n

n∑
i=1

[
δi

π(vi)
εi(1 − E(φ(X ))�−1φ(xi)) +

(
1 − δi

π(vi)

)
ε∗
i (1 − E(φ(X ))�−1φ∗(vi))

+ √
nCn(E(G(X )) − E(φ(X ))�−1E(φ(X )G(X ))

})
+ Op(ηn). (A.29)

Finally the part (b) of theorem can be concluded from Central Limit Theorem as n converge
to infinity. The part (a) of theorem can be concluded similar to that of the part (b) by tacking
Cn = 0.
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