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ABSTRACT
In this paper, we study the performance of a soccer player based
on analysing an incomplete data set. To achieve this aim, we fit the
bivariate Rayleigh distribution to the soccer dataset by themaximum
likelihood method. In this way, the missing data and right censor-
ing problems, that usually happen in such studies, are considered.
Our aim is to inference about the performance of a soccer player by
considering the stress and strength components. The first goal of the
player of interest in amatch is assumed as the stress component and
the second goal of thematch is assumed as the strength component.
We propose some methods to overcome incomplete data problem
and we use these methods to inference about the performance of a
soccer player.
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1. Introduction

One of the most important criteria in distinguishing the quality of a soccer forward player
is his ability to score goals in anymatch. Also, obtaining the first goal is vital in the result of a
soccermatch. Therefore, we can talk about the quality of a forward player based on the time
that takes for him/her to achieve the first goal of the match. To reach this aim, we consider
the stress-strength criterion in statistical studies. Suppose, we have a systemwith stress and
strength components andwe are seeking the probability of exceeding the stress component,
Y, to the strength component, X, say R = P(Y < X). Therefore, we can consider the time
to the first goal of the assumed player in any match as the stress component and we can
consider the time to the second goal of anymatch by any player, as the strength component.

In stress-strength studies such as those of Tong [15] and Constantine et al. [2], it is
usually assumed thatX andY are independent. But inmost studies,X andY are dependent
such as those of Kundu and Gupta [9] and Kakade et al. [8] where the properties of R
based on the generalized exponential distribution and Gumbel distribution, respectively,
are studied.

Meintanis [11] and Pak et al. [12] have considered the full data set of the Union of Euro-
pean Football Associations (UEFA) to inference about the performance of a soccer player.
They have fitted the Bivariate Rayleigh (BVR) distribution to data based on the maximum
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likelihood method. They have ignored most of the matches that affect the inferences. For
example, Pak et al. [12] have ignored all thematcheswithout any goal and thematcheswith-
out penalty scored goals. Consequently, they have lost some useful information about the
matches. In statistical studies, these ignored data are known asmissing information. Indeed
in this paper, our aim is to consider the effects ofmissing data on studies. In soccer case, the
matches that our assumed player has been absent is considered as the missing data because
before studying experiments (matches), we lose the experimental unit (assumed player).
Furthermore, the matches that the player has been substituted and he/she left the match
without goals, is considered as a right censored data. Also, the matches, he/she finished
with no goal are considered as the right censored data, because the time of the experiment
is over.

We propose some models that contain missing data in the estimating equations to
obtain maximum likelihood estimators. We have applied our proposed method for the
BVR distribution. In a similar way, it can be used to derive such estimates for other distri-
butions. Moreover, we will consider effects of missing data and censored data together in
the estimating equations. See Jana [6], Al-khedhairi et al. [1] and Dina [3] for more details
about bivariate Rayleigh distribution and its parameters maximum likelihood estimation.
Also, see Jeevanand [7] for Bayesian inferences with Rayleigh distribution. The probability
density function of BVR distribution is:

f (x, y;λ) =

⎧⎪⎨
⎪⎩
4λ1(λ2 + λ3)xy e−λ1x2−(λ2+λ3)y2 0 < x < y
4λ2(λ1 + λ3)xy e−λ2y2−(λ1+λ3)x2 x > y > 0.
λ3 e−(λ1+λ2+λ3)z2 x = y = z

(1)

where, λT = (λ1, λ2, λ3) is the unknown vector of parameters of the BVR distribution and
z = max(x, y).

Rest of this paper organized as follow. In Section 2, we will construct appropriate esti-
mating equations based on the log-likelihood function by considering the soccer data
problem in our cases. In Section 3, we will derive the asymptotic properties of the esti-
mators. In Section 4, we will use some Monte Carlo simulation study to compare the
maximum likelihood estimates with the different incomplete dataset. In Section 5, some
applications of the proposed methods are discussed and in the next section, real data
are studied by the proposed methods. Also, proof of the theorems are given in the
appendices.

2. Maximum likelihood estimator of stress-strength parameter

Suppose X and Y be the random variables of strength and stress components of a system,
respectively, where their joint distribution follows from the BVR distribution. It is easy to
prove that,

R = P(Y < X) = λ2

λ1 + λ2 + λ3
. (2)
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Therefore, based on the invariance property of the maximum likelihoodmethod, theMLE
of R will be:

R̂ = λ̂2

λ̂1 + λ̂2 + λ̂3
, (3)

where λ̂1, λ̂2 and λ̂3 are the maximum likelihood estimates of parameters of BVR dis-
tribution. Accordingly, it is necessary to determine maximum likelihood estimates of
parameters. To achieve this aim, we consider the full data case, censored data case, missing
data case and censored and missing data case together, say the mixed case, to find MLEs.

2.1. Full data case

If in a soccer competition, all the matches have at least two goals, our assumed player be
present in any matches, and he scores at least one goal in any matches, we will have fully
observed data. Therefore, in this case, the likelihood function will be:

LF(λ) =
n∏

i=1
f (xi, yi;λ) =

∏
I1

f1(xi, yi;λ)
∏
I2

f2(xi, yi;λ)
∏
I3

f3(zi;λ), (4)

where, n is the sample size (the number of games), I1 = {(xi, yi) : xi < yi, i = 1, . . . , n},
I2 = {(xi, yi) : xi > yi, i = 1, . . . , n} and I3 = {(xi, yi) : xi = yi, i = 1, . . . , n}. Therefore,
if in full data case, we consider the log-likelihood function with lF(λ), then the derivatives
of the log-likelihood function with respect to λ1, λ2 and λ3 will be as follow, respectively:

∂ lF(λ)
∂λ1

= n2
λ1 + λ3

+ n1
λ1

−
n∑

i=1
x2i

∂ lF(λ)
∂λ2

= n1
λ2 + λ3

+ n2
λ2

−
n∑

i=1
y2i .

∂ lF(λ)
∂λ3

= n1
λ2 + λ3

+ n2
λ1 + λ3

+ n3
λ3

−
n∑

i=1
max(xi, yi)2

(5)

In Equation (2.4), n1 is the number of observations with xi < yi, n2 is the number of obser-
vations with xi > yi and n3 is the number of observations with xi = yi. Also, we can rewrite
the above equations as:

∂ lF(λ)
∂λ1

=
n∑

i=1

{
I(xi > yi)
λ1 + λ3

+ I(xi < yi)
λ1

− x2i

}

∂ lF(λ)
∂λ2

=
n∑

i=1

{
I(xi < yi)
λ2 + λ3

+ I(xi > yi)
λ2

− y2i

}
.

∂ lF(λ)
∂λ3

=
n∑

i=1

{
I(xi < yi)
λ2 + λ3

+ I(xi > yi)
λ1 + λ3

+ I(xi = yi)
λ3

− max(xi, yi)2
}

(6)

We denote components of the above summations in Equation (6) byψF(λ | xi, yi)which is
a vector function with dimension 3 and it is called the score function. Moreover, I(·) is the
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indicator function. Therefore, MLEs can be obtained by solving the following estimating
equations:

n∑
i=1

ψF(λ | xi, yi) = 0. (7)

To solve the above equations with respect to parameters, it is enough to use recursive
numeric methods such as the Newton-Raphson algorithm or Fisher’s score method.

2.2. Censored data case

Assumptions in the last subsection rarely happen on soccer matches. Therefore, in this
subsection, we consider some minor assumption on the matches. In this case, we just
assume that our player of interest to be present in any matches. Therefore, we will have
only the right censored data problem. Suppose some individuals of variablesX and Y to be
right censored. The relationship between X and Y will be as in Table 1. It is easy to prove
the following statements which are necessary to construct the likelihood functions in the
censored data case,

P(X = x,Y > yc) = 2λ1x e−λ1x2−(λ2+λ3)y2c , (8)

P(X > xc,Y = y) = 2λ2y e−(λ1+λ3)x2c−λ2y2 . (9)

Therefore, the likelihood function based on the right censored data will be:

LC(λ) =
∏
Ix∩Iy

f (xi, yi;λ)
∏
Ix∩Icy

P(X = xi, Y > yci)
∏
Icx∩Iy

P(X > xci , Y = yi)
∏
Icx∩Icy

S(xci , yci),

=
n∏

i=1
{[f (xi, yi; λ)]cxi cyi [P(X = xi, Y > yci)]

cxi (1−cyi )

× [P(X > xci , Y = yi)](1−cxi )cyi [S(xci , yci)]
(1−cxi )(1−cyi )}, (10)

where cxi(cyi) determines the censoring indicator for Xi (Yi). It is equal to 1 if the ith value
of variable X(Y) is observed and it is equal to 0 if the ith individual of variable X(Y) to be
censored. Therefore, if we consider log-likelihood function, lC(λ), in censored case, then
the derivatives of the log-likelihood function with respect to λ1, λ2 and λ3 will be as follow,

Table 1. The relationship between random variables X and Y.

Case X Y Domain of variables

1 observed (IX ) observed (IY ) x > 0, y > 0 (IX ∩ IY )
2 observed (IX ) censored (IcY ) 0 < x < y, y > yc (IX ∩ IcY )
3 censored (IcX ) observed (IY ) x > y > 0, x > xc (IcX ∩ IY )
4 censored (IcX ) censored (IcY ) x > xc , y > yc (IcX ∩ IcY )

Notes: Where some observations maybe censored from the right. The set of fully
observed and censored observations of X(Y) are denoted by IX (IY ) and IcX (I

c
Y ),

respectively. Also, Xc and Yc show the censoring time of the variables.
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respectively:

∂ lC(λ)

∂λ1
=
∑
I1

cxicyi

{
1
λ1

− x2i

}
+
∑
I2

cxicyi

{
1

λ1 + λ3
− x2i

}

+
∑
I0

cxicyi{−z2i } +
n∑

i=1
cxi(1 − cyi)

{
1
λ1

− x2i

}

+
n∑

i=1
cyi(1 − cxi){−x2ci} +

n∑
i=1

(1 − cxi)(1 − cyi){−x2ci}

∂ lC(λ)

∂λ2
=
∑
I1

cxicyi

{
1

λ2 + λ3
− y2i

}
+
∑
I2

cxicyi

{
1
λ2

− x2i

}

+
∑
I0

cxicyi{−z2i } +
n∑

i=1
cxi(1 − cyi)

{
1
λ1

− y2ci

}
.

+
n∑

i=1
cyi(1 − cxi){−y2i } +

n∑
i=1

(1 − cxi)(1 − cyi){−y2ci}

∂ lC(λ)

∂λ3
=
∑
I1

cxicyi

{
1

λ2 + λ3
− y2i

}
+
∑
I2

cxicyi

{
1

λ1 + λ3
− x2i

}

+
∑
I0

cxicyi

{
1
λ3

− z2i

}
+

n∑
i=1

cxi(1 − cyi){−y2i }

+
n∑

i=1
cyi(1 − cxi){−x2ci} +

n∑
i=1

(1 − cxi)(1 − cyi){−z2ci}

(11)

We can rewrite the above equations as follow:

∂ lC(λ)

∂λ1
=

n∑
i=1

[
I(xi > yi)cxicyi

{
1
λ1

− x2i

}
+ I(xi < yi)cxicyi

{
1

λ1 + λ3
− x2i

}

+ I(xi = yi)cxicyi{−z2i } + cxi(1 − cyi)
{
1
λ1

− x2i

}

+ cyi(1 − cxi){−x2ci} + (1 − cxi)(1 − cyi){−x2ci}
]

∂ lC(λ)

∂λ2
=

n∑
i=1

[
I(xi > yi)cxicyi

{
1

λ2 + λ3
− y2i

}
+ I(xi < yi)cxicyi

{
1
λ2

− x2i

}

+ I(xi = yi)cxicyi{−z2i } + cxi(1 − cyi)
{
1
λ1

− y2ci

}
.

+ cyi(1 − cxi){−y2i } + (1 − cxi)(1 − cyi){−y2ci}
]
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∂ lC(λ)

∂λ3
=

n∑
i=1

[
I(xi > yi)cxicyi

{
1

λ2 + λ3
− y2i

}
+ I(xi < yi)cxicyi

{
1

λ1 + λ3
− x2i

}

+ I(xi = yi)cxicyi

{
1
λ3

− z2i

}
+ cxi(1 − cyi){−y2i }

+ cyi(1 − cxi){−x2ci} + (1 − cxi)(1 − cyi){−z2ci}
]

(12)

As in the full data case, we denote components of the above summations in equation (12) by
ψC(λ | xi, yi) which is a vector function with dimension 3. In this case, MLEs are obtained
by solving the following estimating equations:

n∑
i=1

ψC(λ | xi, yi) = 0. (13)

2.3. Missing data case

We consider the other problem of the soccer data set i.e. the occurence of missing data.
Suppose our assumed player is absent in some matches which causes some information of
data to bemissing. Also in this case, it is assumed that anymatch contains at least two goals
and if our assumed player is present, he can score at least one goal. By the above assump-
tion, we will just encounter the missing data problem. Therefore, we consider the case that
some values in recording the random variableY aremissing with an ignorablemechanism,
based on the taxonomy of Rubin [13] and Little and Rubin [10], which means that the data
are Missing at Random (MAR) or are Missing Completely at Random (MCAR). We say
missing mechanism is MCAR if missingness of the data does not depend on the data and
we say missing mechanism isMAR if missingness of the data just depends on the observed
data. Moreover, in this case, the variable X is fully observed.

To estimate parameters of interest, we may remove missing data from the data and
estimate the parameters by the complete observed dataset which is called the Complete
Case (CC) method. The CC method usually gives us biased estimates. To solve this prob-
lem, we use the Inverse Probability Weights (IPW) method of Horvitz and Thompson [5]
which gives unbiased estimates. Therefore, in this case, we will use two methods, say the
CC method and the IPWmethod to estimate parameters. The estimating equations of CC
method and IPWmethod are, respectively:

n∑
i=1

δiψF(λ | xi, yi) = 0, (14)

and
n∑
i=1

δi

π̂(xi)
ψF(λ | xi, yi) = 0, (15)

where δi is the missing indicator and is equal to 1 if the ith individual is observed and is
equal to 0 if the ith individual has missing value. Also, π(xi) is the probability of observing
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the ith individual response of datawhich can be estimated by the logistic regressionmethod
or some nonparametric methods based on the observed variable X as follow:

π̂(xi) =
∑n

j=1 δjKh(xj − xi)∑n
j=1 Kh(xj − xi)

, (16)

where Kh(·) is a kernel function with smoothing parameter h. The parameters can be
obtained from Equations (14) and (15) in a similar way to the full data case. To find more
details about the IPWmethod see Zhao and Lipsitz [17].

2.4. Mixed case

In this case, we consider soccer competitionswith no restrictions. Itmeans thatwe consider
a case that the dataset may contain missing and right censored observations. Therefore,
some values of the variable Y can be missed and some values of this variable can be right
censored and also the variable X can contain the right censored data. We consider the
CC and IPW methods again similar to the missing data case. Therefore, the estimating
equations based on the log-likelihood function will be as follow for CC and IPW methods,
respectively:

n∑
i=1

δiψC(λ | xi, yi) = 0, (17)

n∑
i=1

δi

π̂(xi)
ψC(λ | xi, yi) = 0. (18)

3. Asymptotic distribution

To derive the asymptotic distribution of R̂, it is necessary to derive the asymptotic distri-
bution of λ̂. The Fisher information using the full data is:

IF(λ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−E
(

∂2lF(λ)
∂λ21

)
−E

(
∂2lF(λ)
∂λ1∂λ2

)
−E

(
∂2lF(λ)
∂λ1∂λ3

)

−E
(

∂2lF(λ)
∂λ1∂λ2

)
−E

(
∂2lF(λ)

∂λ22

)
−E

(
∂2lF(λ)
∂λ2∂λ3

)

−E
(

∂2lF(λ)
∂λ1∂λ3

)
−E

(
∂2lF(λ)
∂λ2∂λ3

)
−E

(
∂2lF(λ)

∂λ33

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (19)

where it is easy to prove that:

E
(

∂2lF(λ)
∂λ21

)
= − nλ2

(λ1 + λ2 + λ3)(λ1 + λ3)2
− n

λ21(λ1 + λ2 + λ3)
,

E
(

∂2lF(λ)
∂λ1∂λ2

)
= 0,

E
(

∂2lF(λ)
∂λ1∂λ3

)
= − nλ2

(λ1 + λ2 + λ3)(λ1 + λ3)2
,
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E
(

∂2lF(λ)
∂λ22

)
= − nλ1

(λ1 + λ2 + λ3)(λ2 + λ3)2
− n

λ22(λ1 + λ2 + λ3)
,

E
(

∂2lF(λ)
∂λ2∂λ3

)
= − nλ1

(λ1 + λ2 + λ3)(λ2 + λ3)2
,

E
(

∂2lF(λ)
∂2λ3

)
= − nλ1

(λ1 + λ2 + λ3)(λ2 + λ3)2
− nλ2

(λ1 + λ2 + λ3)(λ1 + λ3)2

− n
λ23(λ1 + λ2 + λ3)

.

Moreover, in a similar way, we can find the Fisher information for censored data, missing
cases with CC and IPW method and mixed cases with CC and IPW methods which are
indicated by IC, ICC, IIPW , ICCC and ICIPW , respectively. The Fisher information using the
censored data is as follow:

IC(λ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−E
(

∂2lC(λ)

∂λ21

)
−E

(
∂2lC(λ)

∂λ1∂λ2

)
−E

(
∂2lC(λ)

∂λ1∂λ3

)

−E
(

∂2lC(λ)

∂λ1∂λ2

)
−E

(
∂2lC(λ)

∂λ22

)
−E

(
∂2lC(λ)

∂λ2∂λ3

)

−E
(

∂2lC(λ)

∂λ1∂λ3

)
−E

(
∂2lC(λ)

∂λ2∂λ3

)
−E

(
∂2lC(λ)

∂λ23

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (20)

where it is easy to prove that:

E
(

∂2lC(λ)

∂λ21

)
= − nE(Cx)E(Cy)λ2

(λ1 + λ3)2(λ1 + λ2 + λ3)
− nE(Cx)E(1 − Cy)

λ21
,

E
(

∂2lC(λ)

∂λ1∂λ2

)
= 0,

E
(

∂2lC(λ)

∂λ1∂λ3

)
= − nE(Cx)E(Cy)λ2

(λ1 + λ3)2(λ1 + λ2 + λ3)
,

E
(

∂2lC(λ)

∂λ22

)
= − nE(Cx)E(Cy)λ1

(λ2 + λ3)2(λ1 + λ2 + λ3)
− nE(1 − Cx)E(Cy)

λ22
,

E
(

∂2lC(λ)

∂λ2∂λ3

)
= − nE(Cx)E(Cy)λ1

(λ2 + λ3)2(λ1 + λ2 + λ3)
,

E
(

∂2lC(λ)

∂2λ3

)
= − nE(Cx)E(Cy)λ2

(λ1 + λ3)2(λ1 + λ2 + λ3)
− nE(Cx)E(Cy)λ1

(λ2 + λ3)2(λ1 + λ2 + λ3)

− nE(Cx)E(Cy)

(λ3(λ1 + λ2 + λ3)
.

Moreover, it is easy to prove that ICC = E(δ)IF , IIPW = IF , ICCC = E(δ)IC and ICIPW = IC.
One can distinguish that all of the mentioned Fisher informations are positive definite.

Now, we can construct the following theorems:
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Theorem 3.1: For large n,

(a)
√
n(λ̂F − λ)

D−→ N3(0, J−1
F (λ)),

(b)
√
n(λ̂C − λ)

D−→ N3(0, J−1
C (λ)),

(c)
√
n(λ̂CC − λ)

D−→ N3(0, J−1
CC(λ)),

(d)
√
n(λ̂IPW − λ)

D−→ N3(0, J−1
IPW(λ)),

(e)
√
n(λ̂CCC − λ)

D−→ N3(0, J−1
CCC(λ)),

(f)
√
n(λ̂CIPW − λ)

D−→ N3(0, J−1
CIPW(λ)),

where Jj(λ) = n−1Ij(λ) with j=F,C,CC,IPW,CCC and CIPW.

Proof of Theorem 3.1 is given in Appendix 1. This theorem determines the asymptotic
properties of the Bivariate Rayleigh distribution parameters. For example, we can use this
theorem to construct some confidence intervals for the parameters.

Now, we can obtain properties of the stress-strength parameter based on Theorem 3.1
by the following theorem:

Theorem 3.2: For large n,

(a)
√
n(R̂F − R)

D−→ N(0, σ 2
F ),

(b)
√
n(R̂C − R)

D−→ N(0, σ 2
C),

(c)
√
n(R̂CC − R)

D−→ N(0, σ 2
CC),

(d)
√
n(R̂IPW − R)

D−→ N(0, σ 2
IPW),

(e)
√
n(R̂CCC − R)

D−→ N(0, σ 2
CCC),

(f)
√
n(R̂CIPW − R)

D−→ N(0, σ 2
CIPW), where, σ 2

j = BTJj(λ)B with j=F,C,CC,IPW,CCC,
CIPW and B = (∂R/∂λ1, ∂R/∂λ2, ∂R/∂λ3).

Proof of Theorem 3.2 is given in Appendix 2. This theorem determines the asymptotic
properties of the stress-strength component of Bivariate Rayleigh distribution. By using
this theorem, we can analyze the R criterion.

4. Simulation study

Before applying our proposed methods to the soccer data set, it is necessary to see the
performance of introduced methods. In this section, we consider Monte Carlo simulation
studies in two cases to investigate the performance of the models under different types of
incomplete datasets. First, we study a model with an equal percentage of missing and cen-
sored data for different methods. In the second study, we consider a model with different
percentage of incomplete data. Therefore, in some cases, the rates of missing data and cen-
sored data will not be equal. Also, in any Monte Carlo simulation study, we will repeat the
algorithm 5000 times.
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4.1. Study 1

Suppose the bivariate components (X,Y) follows from the BVR(1, 1, 1). We consider
the fixed right censoring time in 1.2. Also, we suppose that the following two missing
mechanisms produce missing data in the random variable Y :

Pr(δi = 1) = 0.89, i = 1, 2, . . . , n, (21)

Pr(δi = 1 |Xi = xi) = 1

1 + e−1−1.5xi−1.5x2i
, i = 1, 2, . . . , n, (22)

where the first mechanism is MCAR and the second mechanism is MAR. Therefore, some
data of random variable Y will be missing or right censored and some individuals of ran-
domvariableXwill be right censored. In this study, we have calculatedAbsolute Bias (Bias),
Mean Square Error (MSE), Confidence Interval Width (CIW) and Coverage Probability
(CP) of the stress-strength reliability parameter. The results of Study 1 are given in Table 2
for 5000 Monte Carlo repetitions. Moreover, Missing Mechanism (MM) and the Rate of
Incomplete Data (RID) in random variables X and Y are given in Table 2. To see the sam-
ple size effect on inferences, we have used two different sample sizes in simulations. Results
of the study with sample size 50 are given in the upper row and the results of the study with
sample size 100 are given in lower row (inside of brackets).

In this study,we can say that all themethods have goodperformances. This result follows
from the low rate of incomplete data. However, the IPW method has a little better perfor-
mance than other methods when the missing mechanism is MAR. Also, by increasing the
sample size to 100, the error of all methods reduced. On the other hand, by comparing
the results of censored based methods with missing based methods, we can see a bigger
effect of missing data in comparing with that of censored data to estimate parameters. This
means that the accuracy of estimates in censored based methods is better than that of the
estimates in missing based methods.

Table 2. Study 1 by using two different sample sizes, 50 and 100.

Methods MM RID in X RID in Y Bias MSE CIW CP

C – 0.056 0.055 0.0405 0.0028 0.2372 0.9758
(0.0276) (0.0012) (0.1684) (0.9808)

CC MCAR 0.000 0.109 0.0531 0.0044 0.2496 0.9298
(0.0365) (0.0021) (0.1780) (0.9452)

IPW MCAR 0.000 0.109 0.0524 0.0043 0.2353 0.9150
(0.0359) (0.0020) (0.1678) (0.9332)

CC MAR 0.000 0.094 0.0532 0.0045 0.2486 0.9360
(0.0378) (0.0022) (0.1771) (0.9410)

IPW MAR 0.000 0.094 0.0509 0.0041 0.2357 0.9242
(0.0351) (0.0020) (0.1680) (0.9392)

CCC MCAR 0.056 0.159 0.0434 0.0032 0.2512 0.9758
(0.0291) (0.0013) (0.1785) (0.9802)

CIPW MCAR 0.056 0.159 0.0440 0.0032 0.2361 0.9614
(0.0297) (0.0014) (0.1679) (0.9720)

CCC MAR 0.056 0.145 0.0429 0.0031 0.2502 0.9746
(0.0295) (0.0014) (0.1777) (0.9788)

CIPW MAR 0.056 0.145 0.0419 0.0030 0.2362 0.9676

Notes: Where the results of the study by using sample size 100 are given in brackets. This study contains a different per-
centage of incomplete data (MM: Missing Mechanism; RID: Rate of Incomplete Data; CIW: Confidence Interval Width; CP:
Coverage Probability).
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4.2. Study 2

In this study, we assume the bivariate components (X,Y) follow from the BVR(0.25, 0.5, 1).
We assume that the random right censoring times for method C follow from the following
patterns:

Xci ∼ Uniform(1.2, 1.5), i = 1, 2, . . . , n, (23)

Yci ∼ Uniform(1, 1.5), i = 1, 2, . . . , n. (24)

whenwe estimate parameters byCC and IPWmethods, the followingmissingmechanisms
are assumed to produce missing data in random variable Y :

Pr(δi = 1) = 0.79, i = 1, 2, . . . , n, (25)

Pr(δi = 1 |Xi = xi) = 1
1 + e−0.75−0.75xi

, i = 1, 2, . . . , n. (26)

Moreover, we consider the following random right censoring time andmissingmechanism
for data, when we estimate parameters by CCC and CIPW methods:

Xci ∼ Uniform(1.2, 1.5), i = 1, 2, . . . , n, (27)

Yci ∼ Uniform(1.2, 1.8), i = 1, 2, . . . , n, (28)

Pr(δi = 1) = 0.94, i = 1, 2, . . . , n, (29)

Pr(δi = 1 |Xi = xi) = 1
1 + e−2xi−1.4 , i = 1, 2, . . . , n. (30)

By the above patterns, we will have the same percentage of incomplete data in any cases. In
addition, in this study, the rate of incomplete data for some methods have been increased
from 10 percent to 21 percent in comparison to that of Study 1. The results of Study 2 are
given in Table 3 for the 5000 Monte Carlo repetitions.

From Table 3, one can conclude that the IPW based methods have a good performance
in comparison to those of CC based methods. These good performances of the IPW based
methods are obvious when the missing mechanism is MAR. Also, the performance of the
IPW basedmethods is not too different with respect to the change ofmechanisms. By com-
parison of performances of CC method with CCC method and IPW method with CIPW
method, one can conclude that missing data have a bigger effect than that of censored data
on estimates. Also, by increasing the sample sizes, the accuracy of the estimates increased.

5. Applications

This paper is organized based on the Bivariate Rayleigh distribution, but one can use sim-
ilar methods to analyze data with other bivariate distributions. Our proposed methods
can be applied in complete and incomplete data cases. We used these methods to infer
about fully observed data or a dataset with right-censored observations and missing data.
Also, we used our methods to infer soccer data. However, we can use this method in simi-
lar sports, in economic data to investigate investments in heterogeneous assets, in clinical
researches to study the mortality risk of lung cancer for men versus women, in industrial
studies to calculate the lifetime of different types of steels and etc. Indeed, we can use these
methods in bivariate parametric inferences.
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Table 3. Study 2 by using two different sample sizes, 50 and 100.

Methods MM RID in X RID in Y Bias MSE CIW CP

C – 0.106 0.106 0.0498 0.0046 0.2253 0.9154
(0.0350) (0.0021) (0.1600) (0.9210)

CC MCAR 0.000 0.210 0.0669 0.0087 0.2644 0.8826
(0.0440) (0.0041) (0.1889) (0.9242)

IPW MCAR 0.000 0.210 0.0666 0.0087 0.2344 0.8532
(0.0436) (0.0041) (0.1675) (0.8952)

CC MAR 0.000 0.211 0.0691 0.0095 0.2668 0.8858
(0.0468) (0.0048) (0.1905) (0.9206)

IPW MAR 0.000 0.211 0.0650 0.0083 0.2351 0.8666
(0.0430) (0.0040) (0.1678) (0.9030)

CCC MCAR 0.106 0.102 0.0531 0.0062 0.2301 0.9166
(0.0338) (0.0025) (0.1632) (0.9444)

CIPW MCAR 0.106 0.102 0.0578 0.1014 0.2265 0.9114
(0.0333) (0.0025) (0.1590) (0.9440)

CCC MAR 0.106 0.102 0.0537 0.0066 0.2325 0.9216
(0.0334) (0.0025) (0.1649) (0.9530)

CIPW MAR 0.106 0.102 0.0577 0.0064 0.2245 0.9138
(0.0333) (0.0024) (0.1591) (0.9480)

Notes: where results of the study by using sample size 100 are given in brackets. This study contains approximately 21 per-
centage of incomplete data (MM: Missing Mechanism; RID: Rate of Incomplete Data; CIW: Confidence Interval Width; CP:
Coverage Probability).

6. Real data study

Table 4 represents football dataset for the La Liga league in the seasons 2013–2014,
2014–2015 and 2015–20161. The time of the first goal of assumed player (Cristiano
Ronaldo) in each match is shown with Y (stress component) and the time of the second
goal of the match which is scored by any player is shown with X (strength component). In

Table 4. Real data: Time of the first goal of the player of interest (Y ) and the second goal of the match
by any player (X) in Real Madrid’s matches in La Liga for three seasons.

2013–2014 2014–2015 2015–2016

X Y X Y X Y X Y X Y X Y

26 90+ 25 10 30 88 26 83+ 90+ 90+ 9 9
90+ 90+ 74 56 10 · 2 · 39 90+ 71 90+
45 45 73 75+ 27 27 37 · 17 7 12 12
39 64 25 · 35 28 19 90+ 90+ 90+ 60 90+
19 33 27 · 21 27 74 90+ 67 90+ 10 3
51 51 72 · 39 39 70 70 90+ 90+ 33 33
90+ 90+ 28 82 40 4 65 51 83 90+ 90+ 90+
61 90 49 11 37 12 90+ 90+ 30 30 38 34
90 90 90+ 23 36 36 39 90+ 23 8 50 50
79 90+ 20 55 32 1 32 32 14 14 87 90+
27 32 19 14 41 82 31 31 22 90+ 64 64
31 3 55 15 44 44 72 69 39 90+ 56 85
26 12 66 · 84 90+ 32 20 82 82 18 19
61 3 53 · 66 35 68 90 16 38 40 90
36 · 85 9+ 40 80 17 90+ 90+ 90+ 69 90+
39 62+ 52 6 53 15 48 90+ 10 30 14 ·
34 40 59 90 29 90+ 38 35 49 42 90+ ·
82 82 63 · 68 64 25 90+ 45 90+ 42 28
90+ 90+ 86 · 74 58 22 90+ 25 8

23 12

Also, censored data are considered using ‘+’ sign and missed data are considered using ‘·’ sign.
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this case, (X,Y) is a bivariate continuous random vector for which any cases may happen,
this means that X<Y, X>Y and X=Y are possible. Also, the matches that the special
player was absent are considered as missing data. On the other hand, the matches that an
experiment has been failed or the matches that the player of interest has been substituted
with no score are considered as censored data.

Some of the values are right censoring and some of the information of random variable
Y are missing. Therefore, we use the CCC and CIPWmethods to estimate stress-strength
criterion. Maximum likelihood estimates of stress-strength criterion and its 95% confi-
dence interval based on the CCC method are 0.2586 and (0.1757, 0.3416), respectively.
Also, MLE and confidence interval based on the CIPW for this criterion are 0.2457 and
(0.1686, 0.3228), respectively.

By the results of CIPW method, we can say that our assumed player receives a goal by
the 0.2457 chance in any matches before than any other player. In any soccer matches, at
least 22 players make role. This means that our assumed player has a big role in the results
of any matches as he scores the first goal of any matches by the 0.2457 chance. Also, one
can use this criterion to check the performance of the other soccer players.

Figure 1 shows the marginal distribution of fitted model over the fully observed
data. Where the ML estimation of (λ1, λ2, λ3), based on CCC and CIPW methods are
(0.00022, 0.00010, 0.00007) and (0.00021, 0.00010, 0.00008), respectively.

Figure 2 shows themarginal distribution of variables versus empirical distributions. Our
assumed components are dependent and empirical distribution is drawn by independence
assumption. These caused some difference between the marginal distributions of bivari-
ate Rayleigh distribution and the empirical distributions. This difference is obvious in the

Figure 1. Marginal fitteddensities of bivariate Rayleighdistributionby themaximum likelihoodmethod
for the football dataset.
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Figure 2. Marginal distributions versus the empirical distributions.

marginal distribution of component Y , but it is not more different forX component. How-
ever, these shapes give us an insight about the good performance of the bivariate Rayleigh
distribution which is fitted to the football dataset under the censored and missing data
problems.

7. Discussion and conclusion

Based on the statistics and soccer professionals experiences our assumedplayer is one of the
best forward players in history. As mentioned in the last section, he may score a goal in any
matchwith 0.2457 probability before the other players. Therefore, to study the performance
of the other forward players, one can estimate stress-strength probability of that player and
compare it with theCristianoRonaldo’s stress-strength probability. Obviously, if this stress-
strength probability is closed to 0.2457 or bigger than that, one can say the player is a top
forward player. Also, if this stress-strength probability is less than 0.2457, one can say that
the player is not as a good forward player.

To obtain Fisher information matrix based on the different methods, we need to obtain
expectations such as E(δCxCyh(X,Y)) where h(·) is a real-valued function of X and
Y . Moreover, it is assumed that Cx and Cy are independent of each other and their
distributions are not functions of X and Y. By this assumption, we can conclude that:

E(δCxCyh(X,Y)) = E(Cx)E(Cy)E(δh(X,Y)). (31)

Also, under the MCAR assumption, we can conclude that:

E(δh(X,Y)) = E(δ)E(h(X,Y)). (32)

Moreover, under the MAR assumption, we can conclude that:

E
(

δ

π(X,Y)
h(X,Y)

)
= E

(
E
(

δ

π(X,Y)
h(X,Y)

)∣∣∣∣X = x,Y = y
)

= E(h(X,Y)), (33)

where in the above equation, first equality follows from the conditional expectation prop-
erty and the second equality follows from the MAR mechanism property. In the IPW
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method, we have used a nonparametricmethod to estimate unknown functionπ(·). In this
method, choosing kernel function is not very critical but choosing the bandwidth parame-
ter is very important. How to select the bandwidth parameter is the open problem of these
statistical studies.Wehave chosen to use theCrossValidationmethod to estimate unknown
parameter h.

In this paper, unlike Tong [15] and Constantine et al. [2], we assumed that variables
could be dependent. Meintanis [11] and Pak et al. [12] have used full observations for
their studies and they have ignored most of the incomplete data that were effective in the
analyzes. But unlike them, we have used all of the information and we have not ignored
any data. It can be said that in spite of other researchers which they ignored the effects of
missing data in studies, we have used all of the information in the analysis.

In this paper, we have considered the ability of scoring goals in the matches by players.
This ability may depend on some factors such as matches location, team quality, match
period and etc. Distinguishing effective factors on the ability of scoring goals needs some
other statistical methods such as linear models and factor analysis. Our aim was not to
identify these factors. our aim was to estimate the stress-strength probability of a player
(ability to score the first goal before than any player) under any conditions.

Note

1. For data source see also following site: ‘http://www.espnfc.com/spanish-primera-division/
15/statistics/performance’.
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Appendices

Appendix 1. Proof of Theorem 3.1
Proof of Theorem 3.1 follows from the asymptotic properties of maximum likelihood estimates and
Multivariate Central Limit Theorem under some regularity conditions given in Wang and Wang
[16]. Also, in parts (d) and (f), using Slutsky’s theorem, we have the results based on the following
equations, respectively:

n∑
i=1

δi

π̂i
ψF(λ | xi, yi) =

n∑
i=1

δi

πi
ψF(λ | xi, yi) + oP(1), (A1)

n∑
i=1

δi

π̂i
ψC(λ | xi, yi) =

n∑
i=1

δi

πi
ψC(λ | xi, yi) + oP(1), (A2)

where oP(1) is the probability notation of order and its dimension is equal to dimension of estimating
equations. In our case its dimension is equal to 3.

Appendix 2. Proof of Theorem 3.2
The results of Theorem 3.2 are concluded from Theorem 3.1 and the invariance property of asymp-
totically consistent normal estimates under continuous transformations. To see more similar details
about Theorems 3.1 and 3.2, see also Shao [14] and Ferguson [4].
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