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Abstract
In this paper, we utilize a general linear model for analyzing data with missing values
in some covariates and response variable. Our aim is to fit a general linear model and
to construct a confidence region for the parameters of the general linear model based
on the empirical likelihood ratio function. Also, we assume that missing data may
happen in covariates or in response variable or in both of them with missing not at
randommechanism where the probability of missing a datum is specified by a logistic
model. We use inverse probability weights and an augmented method as the auxiliary
condition of empirical likelihood to estimate parameters of the general linear model.
Asymptotic properties of the empirical log-likelihood ratio are investigated whether
the exponential tilting parameter is known or estimated by the follow-up sample. The
asymptotic normality of estimators is also proved. Some simulation studies are used to
illustrate the performance of our model for different sample sizes. Also, a real dataset
is studied by the proposed methods.
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1 Introduction

In most regression studies, the relationship between the response variable and the
covariates is not linear and fitting a linear model is not appropriate. To solve this
problem, we use a general version of the linear model, the general linear model. A
general linear model represents the relationship between a response Y and a vector
function of covariates X with dimension m that can be formulated as follow:

Y = hT (X)β + ε, (1)

where h(·) is a known vector function of dimension d, T is used for transposing, β is
an unknown parameter vector of dimension d and ε is the sampling error with mean
zero and constant variance. Also, it is assumed that the conditional expectation of ε

follows the conditions E(ε|X = x) = 0 and E(ε2|X = x) < ∞.
In this paper, we assume that missing data can be occurred both in covariates

and in response variables but it is necessary to have at least one variable which is
fully observed because to estimate unknown functions based on kernel method, it is
necessary to have at least onevariablewhich is fully observed (at least responsevariable
or one of the covariate variables). It is assumed that V contains all the variables, Z
contains fully observed variables andU contains incomplete variables. Therefore, the
data for the ith individual will be as follow:

(xi , yi , δi ) = (vi , δi ) = (zi , ui , δi ), i = 1, . . . , n,

where δi = 1 if the ith individual of variable U is observed and otherwise δi = 0.
By Rubin’s classification (1976), we say missing mechanism is MCAR if the prob-

ability of observing a datum does not depend on the data, missing mechanism is
MAR if the probability of observing a datum does not depend on the missing data
and missing mechanism is MNAR if the probability of observing a datum depends on
the missing and observed data. Most researchers consider missing at random (MAR)
mechanism as the common mechanism for statistical inferences with missing data.
However, missing mechanism depends on missed data in many cases such as survey
data, longitudinal data, clinical data etc., and using missing not at random mechanism
can be more reasonable. Moreover, MNAR mechanism is more general than MAR
mechanism and MAR mechanism can be regarded as a submodel of MNAR mecha-
nism. Throughout this article, we assume the MNAR mechanism as a mechanism of
the missing data.

InMNARmechanism,missingness probability is unknown andmoreover, the prob-
ability of observing or missing an individual depends on the variable that contains
missing data, for these reasons estimating of missingness probability is more complex
than that of MARmechanism. For this reason, Kim and Yu (2011) determined a semi-
parametric method to estimate mean function based on the exponential tilting model
which is considered for the missingness probability. Zhao et al. (2013) improved the
Kim and Yu (2011) method by using more auxiliary information in the empirical
likelihood ratio function. Furthermore, Tang and Zhao (2013) used the empirical log-
likelihood ratio to inference about the nonlinear regression models. On the other hand,
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Niu et al. (2014) used this empirical method for fitting a linear model. They showed
that the log-likelihood ratio is asymptotically convergent to a weighted chi-square dis-
tribution and

√
n-consistent estimators of parameters are asymptotically convergent

to the normal distribution. In this way, they have constructed the confidence intervals
based on the empirical log-likelihood ratiowhich is introduced byOwen (1988, 1990).
Also, the improved version of this method is given by Zhao et al. (2015) to inference
about the regression model. Since in the empirical log-likelihood method, the confi-
dence interval does not require prior assumptions and pivotal, it has a widespread use
in statistical inferences. Also, in Owen’s mentioned method, confidence regions are
constructed based on an appropriate region that is dominated by the empirical log-
likelihood ratio. In addition, Niu et al. (2014) have considered a simple linear model
where missing data happens by MNAR mechanism in the response variable and they
have considered some imputation methods to deal with missing data problems.

In this paper, we consider a general linear model where missing data can occur in
the covariates and response variables by anMNARmechanism.We use three auxiliary
conditions of estimating equations in empirical likelihood functions to inference about
the general linear model. In this way, we apply the similar methods used in Creemers
et al. (2011) to add partly observed data in inferences. Also, we estimate exponential
tilting parameter from a follow-up sample. In this paper, we have assumed that missing
data follows from a logistic model. To see inferences without this assumption see also
Genback et al. (2015) where they inference about a regression model with missing
data by a nonignorable mechanism.

The rest of this paper is organized as follow. In Sect. 2, we introduce three methods
to estimate parameters of the general linear model and we will illustrate the empirical
details of this three methods. In Sect. 3, we will present asymptotic properties of the
three methods. In Sect. 4, some simulation studies are used to see the performance of
the different methods under the different missing mechanism schemes and different
sample sizes assumptions. In Sect. 6, the details of some points are discussed. Also,
the details and proofs of the theorems are given in the Appendix.

2 Methods

In this section,we propose threemethods for analyzing general linearmodelwithmiss-
ing data by MNAR mechanism where missing data occurs in covariates or response
variable. To achieve this aim, it is enough to have at least one variable without missing
data. Our aim is to estimate parameters of the general linear model and then construct-
ing the appropriate confidence intervals for the parameters of this model.

Let π(vi ) be the probability of observing the ith datum. Therefore, π(vi ) takes the
following form under the MNAR assumption:

π(vi ) = Pr(δi = 1|xi , yi ) = Pr(δi = 1|zi , ui ) = Pr(δi = 1|vi ), i = 1, . . . , n.

(2)
In real data analyses, π(vi ) is unknown and we have to estimate it. It seems that
considering a model for missingness pattern is necessary in MNAR case. As Kim and
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Yu (2011) done, we consider the following logistic model for missing data probability:

π(vi ) = Pr(δi = 1|zi , ui ) = eg(zi )+φc(ui )

1 + eg(zi )+redφc(ui )
, i = 1, . . . , n, (3)

where g(·) is an unknown function,φ is an unknown parameter and c(·) is a real-valued
function of variables with missing data. The conditional odds of δi can be written as
follow:

O(zi , ui ) = Pr(δi = 0|zi , ui )
Pr(δi = 1|zi , ui ) = 1

π(vi )
− 1 = e−g(zi )+γ c(ui ), i = 1, . . . , n. (4)

where γ = −φ. On the other hand, based on the exponential tilting model which is
mentioned on Kim and Yu (2011), we can write:

f0(ui |zi ) = eγ c(ui )

E(eγ c(Ui )|zi , δi = 1)
f1(ui |zi ), i = 1, . . . , n, (5)

where for δ = 0, f0(u|z) is the conditional density of U given Z and similarly,
f1(u|z) is the conditional density of U given Z for δ = 1. Also for simplicity, we
define α(zi , γ ) = O(zi ,ui )

eγ c(ui )
. Under the logistic model of Eq. (3) and exponential tilting

model of Eq. (5), by replacing O(Zi ,Ui ) with 1
π(Vi )

− 1 and some mathematical
operations, it is easy to prove that:

E(δi O(Zi ,Ui )|Zi = zi ) = E

(
δi

π(Vi )
− δi |Zi = zi

)

= 1 − E(δi |Zi = zi )

= E(1 − δi |Zi = zi ), (6)

in addition, by replacing O(Zi ,Ui )withα(Zi , γ )eγ c(ui ) and somemathematical oper-
ations, we can conclude that:

E(δi O(Zi ,Ui )|Zi = zi ) = α(Zi , γ )E(δi e
γ c(ui )|Zi = zi ). (7)

Therefore, by combining Eqs. (6) and (7), we can conclude,

α(Zi , γ )E(δi e
γ c(ui )|Zi = zi ) = E(1 − δi |Zi = zi )

= E(δi O(Zi ,Ui )|Zi = zi ). (8)

Thus, based on Eq. (8), an empirical estimator of α(zi , γ ) will be as:

α̂(zi , γ ) =
∑n

j=1(1 − δ j )Kh(z j − zi )∑n
j=1 δ j eγ c(u j )Kh(z j − zi )

, (9)
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where Kh(·) is a kernel function with smoothing parameter h. Also in a similar way,
an empirical estimator of π(vi ) based on α̂(zi , γ ) can be obtained as:

π̂(vi ) = {1 + α̂(zi , γ )eγ c(ui )}−1. (10)

Above estimators are valid when γ is known. It is considered known in Rotnitzky et al.
(1998) to access the sensitivity of the analysis.But, inmost studies it is unknownandwe
have to estimate it. An estimation of tilting parameter γ can be found parametrically by
an estimating equation based on a follow up sample. For more details about validation
sample and estimation of tilting parameter see also Kim andYu (2011). The estimating
equations to find γ is given in the next section.

2.1 Empirical likelihood inference based on the inverse probability weights

We assume that auxiliary random vectors based on the inverse probability weights to
be as follow:

ψi,I PW (β) = δi

π(vi )
S(vi , β), i = 1, . . . , n, (11)

where S(vi , β) = S(yi , xi , β) = h(xi )(yi − hT (xi )β), is the score function which is
deducedbased on the ordinary least squaremethod and it can be obtained from the other
estimating methods such as maximum likelihood method. By the above definition, we
can formulate the empirical likelihood model in a simple way. It is easy to prove that
E(ψi,I PW (β)) = 0. Therefore, the inverse probability weighted empirical likelihood
(IPWEL) function can be defined as follow:

L I PW (β) = sup

{
n∏

i=1

npi |pi > 0,
n∑

i=1

pi = 1,
n∑

i=1

piψi,I PW (β) = 0

}
, (12)

where pi is the probability mass of the ith member of the sample and as men-
tioned in the above equation

∑n
i=1 pi = 1. Without considering auxiliary condition,∑n

i=1 piψi,I PW (β) = 0, in the above IPWEL function, we can estimate p̂i = 1
n . The

inverse probability weighted log-likelihood ratio (IPWLR) function for parameter β

with some corrections (minus twice of the empirical log-likelihood ratio to obtain its
asymptotic distribution) will be as follow:

lI PW (β) = −2sup

{
n∑

i=1

log(npi )|pi > 0,
n∑

i=1

pi = 1,
n∑

i=1

piψi,I PW (β) = 0

}
.

(13)
Therefore, by Lagrange method, one can obtain that, p̂i = 1

n(1+λT ψi,I PW (β))
, where λ

is a Lagrange multiplier real valued vector with dimension d. The IPWLR function
will be as follow:

lI PW (β) = 2
n∑

i=1

log(1 + λTψi,I PW (β)). (14)
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The empirical maximum likelihood estimator of β by IPW method can be calculated
by maximizing −lI PW (β) over all domain of β and λ. Based on the IPW method, we
estimate βI PW with Lagrange multiplier method by using the following estimating
equations: ⎧⎨

⎩
T1,I PW = 1

n

∑n
i=1

ψi,I PW (β)

1+λT ψi,I PW (β)
= 0

T2,I PW = 1
n

∑n
i=1

λδi h(xi )hT (xi )(β)

π(vi )(1+λT ψi,I PW (β))
= 0.

(15)

2.2 Empirical likelihood inference based on the augmentedmethod

In IPWEL inferences, we have ignored the partly missed data where is partly observed
too. This may decrease the efficiency of our estimators. for example, the big missing-
ness probability of a datum may depend on the magnitude of the data. In this case, we
may loss the data with large values or with small values. On the other hand, we loss
partly observed data that is useful in our inferences and may increase the variance of
the estimator. To see more details about missing data effect on efficiency of estimators
see also Carpenter et al. (2006). Therefore, we consider two other methods where
these methods can use the informations of the partly observed data. We also use an
augmented method that augments expectation of auxiliary mean score vector by an
appropriate weight to the inverse probability weight auxiliary condition as follow:

ψi,Aug(β) = δi

π̂(vi )
S(vi , β) +

(
1 − δi

π̂(vi )

)
m̂(zi , γ ), i = 1, . . . , n, (16)

where m(zi , γ ) = E(S(vi , β)|Zi = zi , δ = 0). In a similar way to Kim and Yu
(2011) and the same arguments used in Niu et al. (2014), we can estimate m(zi , γ )

semiparametrically as follow:

m̂(zi , γ ) =
∑n

j=1 δ j S(z j , u j , β)eγ c(u j )Kh(z j − zi )∑n
j=1 δ j eγ c(u j )Kh(z j − zi )

, i = 1, . . . , n. (17)

Also we can rewrite ψi,Aug(β) based on the score function S(vi , β), as follow:

ψi,Aug(β) =
n∑
j=1

Wi j,0S(vi , β), (18)

where by considering δi j as a Kronecker multiplier,

Wi j,0 = δ j

{
δi j

π̂(v j )
+

(
1 − δi

π̂(vi )

)
eγ c(u j )Kh(z j − zi )∑n

j=1 δ j eγ c(u j )Kh(z j − zi )

}
. (19)
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Therefore, the augmented empirical log-likelihood ratio (AELR) can be defined as
follow:

lAug(β) = −2sup

{
n∑

i=1

log(npi )|pi > 0,
n∑

i=1

pi = 1,
n∑

i=1

piψi,Aug(β) = 0

}
. (20)

By Lagrange method it is easy to obtain that the AELR function is as:

lAug(β) = 2
n∑

i=1

log(1 + λψi,Aug(β)). (21)

Moreover, we can rewrite the AELR function based on the score function as follow:

lAug(β) = 2
n∑

i=1

log

⎛
⎝1 +

n∑
j=1

Wi j,0λ
T S(z j , u j , β)

⎞
⎠ . (22)

The empirical maximum likelihood estimator of β based on the augmented method
can be obtained by maximizing −lAug(β) over all domain of β and λ. Based on
the augmented method, we estimate β jointly with Lagrange multiplier by using the
following two estimating equations:

⎧⎪⎨
⎪⎩
T1,Aug = 1

n

∑n
i=1

∑n
j=1 Wi j,0S(z j ,u j ,β)

1+∑n
j=1 Wi j,0λ

T S(z j ,u j ,β)
= 0

T2,Aug = 1
n

∑n
i=1

∑n
j=1 Wi j,0λ

T h(x j )hT (x j )

1+∑n
j=1 Wi j,0λ

T S(z j ,u j ,β)
= 0.

(23)

2.3 Empirical likelihood inference based on the improved augmentedmethod

Again we consider augmented method, but we estimate mean score function,m(Z , γ )

as follow:

m̂(zi , γ ) =
∑n

j=1 δ j S(zi , u j , β)eγ c(u j )Kh(z j − zi )∑n
j=1 δ j eγ c(u j )Kh(z j − zi )

, i = 1, . . . , n. (24)

The difference between estimators given in Eqs. (17) and (24) is obvious where in the
above estimator the observed variables of estimators remain without change (see zi in
S(·)which is the observed part of the ith individual and ui is the missing part of the ith
individual). This method is used by Creemers et al. (2011) to estimate parameters of
a linear model with missing at random covariates. Also, in their studies, this method
had a good performance. We call this method, Improved Augmented (IA) method. It
is easy to obtain that the improved augmented empirical log-likelihood ratio (IAELR)
is as follow:
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lI A(β) = 2
n∑

i=1

log

⎛
⎝1 +

n∑
j=1

Wi j,0λ
T S(zi , u j , β)

⎞
⎠ . (25)

The empirical maximum likelihood estimator of β based on the IA method can be
obtained bymaximizing−lI A(β) over all domain of β and λ. Based on the IAmethod,
we estimate β jointly with Lagrange multiplier by using the following two estimating
equations:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T1,I A = 1
n

∑n
i=1

∑n
j=1 Wi j,0S(zi ,u j ,β)

1+∑n
j=1 Wi j,0λ

T S(zi ,u j ,β)
= 0

T2,I A = 1
n

∑n
i=1

∑n
j=1 Wi j,0λ

T h(xi,obs ,x j,mis)hT (xi,obs ,x j,mis )

1+∑n
j=1 Wi j,0λ

T S(z j ,u j ,β)
= 0,

(26)

where Xobs is the fully observed vectors of covariates and Xmis is the partly missed
vector of covariates.

3 Theoretical results

In this section, we will study asymptotic properties of the three discussed methods.
We will determine two theorems in the cases that tilting parameter is known and
unknown. We will see asymptotic normality of proposed estimators and asymptotic
convergence of the empirical log-likelihood ratios to a chi-square distribution. Also,
we have assumed that the regularity conditions given in the Appendix hold.

3.1 Asymptotic inference with known tilting parameter

In this section, we assume that γ is known. For simplicity, we define the following
notations:

A = E(π−1(Z ,U )h(X)hT (X)ε2 + (1 − π−1(Z ,U ))E2(h(X)ε|Z = z, δ = 0)),

T = E(h(X)hT (X)), B = E(π−1(Z ,U )h(X)hT (X)ε2).

Theorem 1 Suppose the regularity conditions given in the Appendix hold. For true
values of β and known tilting parameter, we have:

(a)
√
n(β̂I PW − β)

D−→ N (0, T−1AT−1),

√
n(β̂Aug − β)

D−→ N (0, T−1AT−1),

√
n(β̂I A − β)

D−→ N (0, T−1AT−1),

(b) l̂ I PW (β, γ )
D−→ ρ1,I PWX 2

1,1 + ρ2,I PWX 2
1,2 + · · · + ρd,I PWX 2

1,d

l̂Aug(β, γ )
D−→ X 2

d ,
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Fig. 1 Confidence regions in one parameter (left plot) and two parameters (right plot) cases

l̂ I A(β, γ )
D−→ X 2

d ,

where X 2
1,i ’s, i = 1, . . . , d are the independent variables from the chi-square dis-

tribution with one degree of freedom, ρi,I PW ’s, i = 1, . . . , d are the eigenvalues of
B−1A and X 2

d is the random variable from the chi-square distribution with d degrees
of freedom.

We can use Theorem 1(a) to construct a confidence region for parameters of general
linear model based on the different pivotals and we can test the hypothesis such as
H0 : β = β0 at level α. We call the inferences based on Theorem 1(a), normal
approximation (NA) inferences. The part (b) of Theorem 1 gives the empirical log-
likelihood ratio properties of the mentioned methods. We can use Theorem 1(b) to
inference about parameters of the general linear model without needing to have any
pivotals where an approximate 100(1 − α)% confidence region for β consist of all
possible β0’s for which the null hypothesis H0 : β = β0 would not be rejected
at level α. The approximate 100(1 − α)% confidence region by IPW method can
be constructed by C II PW = {β|l̂ I PW (β, γ ) ≤ ∑d

i=1 ρi,I PWX1,i
2(1 − α)}, where

X 2
1,i (1 − α)’s, i = 1, . . . , d are the (1 − α) quantile of the Chi-square distribution

with one degree of freedom. Also, the confidence region for parameters of the other
methods can be constructed in the same way. To have a better perception about the
confidence regions without using any pivotals by the empirical log-likelihood ratio
method, see also Fig. 1. The left curve in Fig. 1 shows the empirical log-likelihood
ratio for the general linear model with one parameter that cut off by the vertical
line, l = ∑d

i=1 ciXd,i
2(1 − α). The cut points give the beginning and the end of

the approximate 100(1 − α)% confidence interval. Also, consider the right shape in
Fig. 1 where shows the empirical log-likelihood ratio for the general linear model
with two parameters. The confidence region obtained by mapping of the intersection
between the empirical log-likelihood shape and the plane, l = ∑d

i=1 ciXd,i
2(1 − α)

to coordinate plane of β1 and β2. Where ci ’s and d are same as to those defined in
Theorem 1.

123



F. Bahari et al.

The proof of Theorem 1 is given in the Appendix. Also, appropriate and consistent
estimators of unknown statistics are given in the Appendix.

3.2 Asymptotic inference with unknown tilting parameter

Naturally, in statistical inferences, tilting parameter is unknown and we have to esti-
mate it. Using validation sample is a common way to estimate tilting parameter. We
estimate tilting parameter from the following consistent estimating equations,

n∑
i=1

ri (1 − δi )(c(ui ) − m̂∗(zi , γ )) = 0, (27)

where m∗(zi , γ ) = E(c(U )|zi , δ = 0), ri is an indicator function which takes value
1 if the unit i, i = 1, . . . , n belongs to the follow-up sample and otherwise it is equal
to 0. The validation sample is randomly selected from set of nonrespondents and the
response are obtained for all the elements in validation sample. Also, the validation
sample size is a pre-specified proportion of dataset, n.

One can estimate tiltingparameter byusing the conditions such as E( δ
π(X ,Y )

|x, y) =
1. However, this condition gives an unbiased estimation of tilting parameter but esti-
mation of tilting parameter with this condition is not appropriate because its variance
is big and cause to bad results. Also, the bad performance of considering this condition
to estimate the tilting parameter was obvious in our pre-simulation studies. For this
reason, it seems using the mentioned method in Eq. (27) is necessary to estimate the
tilting parameter.

For simplicity, we define the following notations,

M = E(r(1 − δ)(E(c2(U )|Z = z, δ = 0) − m∗2(Z , γ ))),

H = E((1 − π(U , Z))(c(U ) − m∗(Z , γ ))(S(U , Z , β) − m(Z , γ ))),

η = δ

π(V )
S(Z ,U , β) +

(
1 − δ

π(V )

)
E(S(Z ,U , β)|z, δ = 0)

+ HM−1[(1 − δ)r − δE(r |δ = 0)(π−1(V ) − 1)](c(U ) − m∗(Z , β)),

and define Ã as the variance of random variable η. Now,we can construct the following
theorem when tilting parameter is unknown.

Theorem 2 Suppose the conditions given in the Appendix hold. For true values of β

and γ̂ from Eq. (27), we have:

(a)
√
n(β̂I PW − β)

D−→ N (0, T−1 ÃT−1)

√
n(β̂Aug − β)

D−→ N (0, T−1 ÃT−1),

√
n(β̂I A − β)

D−→ N (0, T−1 ÃT−1).

(b) l̂ I PW (β, γ )
D−→ ρ1,I PWX 2

1,1 + ρ2,I PWX 2
1,2 + · · · + ρd,I PWX 2

1,d ,
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l̂ Aug(β, γ )
D−→ ρ1,AugX 2

1,1 + ρ2,AugX 2
1,2 + · · · + ρd,AugX 2

1,d ,

l̂ I A(βγ )
D−→ ρ1,I AX 2

1,1 + ρ2,I AX 2
1,2 + · · · + ρd,I AX 2

1,d .

The weights ρi,I PW , ρi,Aug and ρi,I A, i = 1, . . . , d are the eigenvalues of B−1 Ã,
A−1 Ã and A−1 Ã, respectively. In this theorem, the empirical log-likelihood distribu-
tion of IPWmethod is similar to results of the first theorem. In this case, the coefficients
of chi-square distribution are different. Moreover, the empirical log-likelihood distri-
butions of augmented methods are different in comparison to the results of Theorem 1.
This difference follows by the second lemma which is specified in the Appendix. The
proof of Theorem 2 and appropriate consistent estimators of unknown functions is
given with details in the Appendix.

4 Simulation study

In this section, we will study the performances of the three mentioned methods. We
divide the simulation study to two sections, wherein Sect. 4.1, we have studied a
general linear model with one covariate and in Sect. 4.2, we have studied a general
linear model with two covariates. To see performances of the proposed methods,
we have implemented several cases of missing data mechanism by different rates
of the missingness in variables. Also, we have considered several sample sizes to
see the sample size effect on inferences. Moreover, the confidence level to construct
confidence regions is 95% for all methods.

4.1 General linear model with one covariates

For the general linear model of Eq. (1), suppose h(X) = 1 + X , where, X is a
random variable from normal distribution N (0, 1), ε is a random variable from normal
distribution N (0, 0.25) and parameter of the general linear model is equal to 1.

Study 1. Missingness in response
Assume that covariate X is fully observed and missing data occurred in the response
variable Y . The following three missing patterns is given to generate missing data in
the response variable:

Case 1. π1(xi , yi ) = 1/(1 + e−(0.5xi+0.5yi+0.8)),
Case 2. π2(xi , yi ) = 1/(1 + 0.5(0.6 + |xi |)e−xi yi ),
Case 3. π3(xi , yi ) = 1/(1 + e−(0.6xi+0.6yi+1.6)),

by which we will have approximately 25%, 25% and 15% rates of missing data in Y ,
respectively. Case 1 and Case 3 both are logistic models but with different percentage
of missing data which help us to see the effect of missing rates effects on inferences.
Also, the second pattern is a nonlogistic model with the same rate of missingness to
the Case 1 and used to see performances of proposed methods under the nonlogistic
patterns.
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The Gaussian function is used as a kernel function and bandwidth parameter h is
estimated by Cross Validation method. 30% rate of the follow-up sample is used to
estimate γ by Eq. (27) where c(u) = u is chosen.

Table 1 constructed by 3000 Monte Carlo repetitions. Where, absolute biases (AB)
of estimators,mean square errors (MSE) of estimators, internal range of quantile (IQR)
for 3000 Monte Carlo repetition, coverage probability by normal (CPN) approxima-
tion, coverage probability by empirical log-likelihood (CPEL) approximation, average
widths of confidence intervals by normal (AWCIN) approximation and average widths
of confidence intervals by empirical log-likelihood (AWCIEL) approximation, for
three methods IPW, Aug and IA, are given in Table 1.

From Table 1, by increasing the sample size all three methods have progressive
performances. Also, improvement in results can be seen by decreasing the rate of
missingness. Method IA does not show a good performance for the high rate of miss-
ingness, but its performance improves when the sample size increases. Two other
methods also have approximately the same performances. Where IPW method have
an appropriate coverage probability and it seems that the length of the confidence
intervals for the Aug method are lower than those of the IPW method. Overall in this
study, all three methods lead to good performances unless IA method when we have
the high rate of missingness and small sample size.

Study 2. Missingness on covariate
Assume that response variable Y is fully observed and some individuals of covariate
X are missing by the above patterns. Also, in this case, we apply the similar argument
used in Study 1. Therefore, the rate of missingness will be the same as those of the
last study. Results of this study are given in Table 2.

From Table 2, we can conclude that results are the same as Study 1. But in this
case, IA method have coverage probability at least as good as IPW method. When
missing values happen in covariate variable, Aug method has a better performance
in comparison with two other methods. Also, in this case, IA method has a better
performance in comparisonwith that of Study 1.Overall in this study, all threemethods
have good performances.

4.2 General linear model with two covariates

Study 3. Missingness on the response or a covariate
For general linear model of Eq. (1), suppose h(x) = (x21 , log(4+ x2)), where X1 and
X2 are random variables from Uniform distributions U (0, 1) and U (−1, 1), respec-
tively. Moreover, it is assumed that β = (2, 1).

In this study we assume that missingness in response or covariates follows from
one of the following MNAR mechanisms,

Case 4. π4(x1,i , x2,i , yi ) = 1/(1 + e−(0.6x1,i−x2,i+0.6yi )),
Case 5. π5(x1,i , x2,i , yi ) = 1/(1 + |x1,i + x2,i |e−0.75x1,i yi ).

In both cases, 20.4% of data will bemissing approximately. The independent Gaussian
kernels are used to estimate unknown functions where the rate of follow-up is 30%
where c(u) = u is chosen.
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Table 1 Effect of sample sizes, missingness rates, andmissingness mechanisms on inferences about param-
eters of a general linear model with one covariate when the response variable is missing not at random

π n Method AB MSE IQR CPN CPEL AWCIN AWCIEL

π1 50 IPW 0.0449 0.0032 0.0757 0.9463 0.9447 0.24219 0.2482

Aug 0.0458 0.0034 0.0770 0.9423 0.9390 0.2343 0.2360

IA 0.0523 0.0046 0.0809 0.9217 0.9220 0.2345 0.2447

100 IPW 0.0315 0.0016 0.0536 0.9533 0.9547 0.1608 0.1636

Aug 0.0319 0.0016 0.0540 0.9517 0.9527 0.1582 0.1619

IA 0.0353 0.0020 0.0569 0.9327 0.9353 0.1583 0.1654

150 IPW 0.0261 0.0011 0.0445 0.9503 0.9473 0.1291 0.1304

Aug 0.0265 0.0011 0.0447 0.9430 0.9443 0.1275 0.1306

IA 0.0290 0.0013 0.0473 0.9223 0.9233 0.1276 0.1326

π2 50 IPW 0.0437 0.0030 0.0717 0.9380 0.9377 0.2091 0.2130

Aug 0.0438 0.0030 0.0724 0.9410 0.9390 0.2136 0.2163

IA 0.0444 0.0031 0.0731 0.9397 0.9357 0.2135 0.2170

100 IPW 0.0309 0.0015 0.0499 0.9380 0.9370 0.1493 0.1509

Aug 0.0309 0.0015 0.0496 0.9413 0.9410 0.1522 0.1525

IA 0.0314 0.0016 0.0504 0.9400 0.9370 0.1522 0.1529

150 IPW 0.0260 0.0011 0.0417 0.9393 0.9360 0.1222 0.1229

Aug 0.0258 0.0011 0.0418 0.9440 0.9367 0.1244 0.1238

IA 0.0111 0.0263 0.0401 0.9397 0.9307 0.1244 0.1240

π3 50 IPW 0.0419 0.0028 0.0709 0.9523 0.9537 0.2177 0.2223

Aug 0.0424 0.0028 0.0716 0.9453 0.9467 0.2136 0.2149

IA 0.0452 0.0033 0.0744 0.9400 0.9390 0.2138 0.2117

100 IPW 0.0298 0.0014 0.0523 0.9533 0.9520 0.1517 0.1540

Aug 0.0300 0.0014 0.0525 0.9483 0.9460 0.1496 0.1521

IA 0.0326 0.0016 0.0547 0.9347 0.9370 0.1497 0.1550

150 IPW 0.0246 0.0009 0.0402 0.9463 0.9457 0.1211 0.1219

Aug 0.0247 0.0010 0.0408 0.9447 0.9433 0.1198 0.1218

IA 0.0261 0.0011 0.0401 0.9317 0.9363 0.1198 0.1232

Where, 3000 Monte Carlo repetitions are used to estimate some criteria (AB absolute bias, MSE mean
square error, IQR internal range of quantile, CPN coverage probability by normal approximation, CPEL
coverage probability by empirical log-likelihood approximation, AWCIN average width of confidence inter-
val by normal approximation, AWCIEL average width of confidence interval with empirical log-likelihood
approximation)

Table 3 is constructed by 3000 Monte Carlos repetitions. In the first part of Table 3,
we have assumed that missingness happened in the response variable and covariates
are fully observed and in the other part of Table 3, we have assumed that missingness
happened in the covariate X1 and the other two variables are fully observed. The
coverage probabilities of intervals obtained by different methods are shown by CPN
and CPEL for normal approximation and empirical log-likelihood approximation,
respectively. Also, we have used the MSE to see the performance of estimators of
different methods.
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Table 2 Effect of sample sizes, missingness rates, andmissingness mechanisms on inferences about param-
eters of a general linear model with one covariate when covariate variable is missing not at random

π n Method AB MSE IQR CPN CPEL AWCIN AWCIEL

π1 50 IPW 0.0436 0.0030 0.0742 0.9500 0.9487 0.2444 0.2507

Aug 0.0437 0.0030 0.0740 0.9447 0.9490 0.2390 0.2553

IA 0.0440 0.0031 0.0736 0.9397 0.9467 0.2394 0.2584

100 IPW 0.0306 0.0015 0.0526 0.9567 0.9570 0.1613 0.1645

Aug 0.0307 0.0015 0.0525 0.9513 0.9607 0.15868 0.1690

IA 0.0308 0.0015 0.0519 0.9513 0.9537 0.1587 0.1708

150 IPW 0.0253 0.0010 0.0430 0.9570 0.9563 0.1258 0.1339

Aug 0.0256 0.0010 0.0436 0.9507 0.9593 0.1258 0.1328

IA 0.0258 0.0010 0.0435 0.9536 0.9593 0.1258 0.1339

π2 50 IPW 0.0424 0.0028 0.0708 0.9447 0.9453 0.2184 0.2230

Aug 0.0425 0.0029 0.0710 0.9460 0.9527 0.2198 0.2269

IA 0.0428 0.0029 0.0703 0.9440 0.9493 0.2194 0.2184

100 IPW 0.0299 0.0014 0.0506 0.9473 0.9490 0.1509 0.1502

Aug 0.0301 0.0014 0.0505 0.9483 0.9527 0.1522 0.1590

IA 0.0303 0.0014 0.0510 0.9487 0.9533 0.1521 0.1565

150 IPW 0.0245 0.0009 0.0416 0.9553 0.9533 0.1223 0.1229

Aug 0.0246 0.0009 0.0418 0.9550 0.9563 0.1234 0.1257

IA 0.0247 0.0009 0.0419 0.9527 0.9523 0.1233 0.1234

π3 50 IPW 0.0414 0.0027 0.0700 0.9510 0.9507 0.2223 0.2271

Aug 0.0417 0.0027 0.0700 0.9467 0.9490 0.2179 0.2298

IA 0.0418 0.0027 0.0703 0.9476 0.9523 0.2180 0.2216

100 IPW 0.0296 0.0013 0.0514 0.9563 0.9547 0.1522 0.1545

Aug 0.0297 0.0013 0.0517 0.9523 0.9570 0.1496 0.1569

IA 0.0296 0.0013 0.0518 0.9553 0.9580 0.1497 0.1582

150 IPW 0.0241 0.0009 0.0398 0.9467 0.9417 0.1214 0.1223

Aug 0.0243 0.0009 0.0408 0.9407 0.9457 0.1196 0.1245

IA 0.0243 0.0009 0.0412 0.9400 0.9463 0.1196 0.1255

Where 3000 Monte Carlo repetitions are used to estimate some criteria (AB absolute bias, MSE mean
square error, IQR internal range of quantile, CPN coverage probability by normal approximation, CPEL
coverage probability by empirical log-likelihood approximation, AWCIN average width of confidence inter-
val by normal approximation, AWCIEL average width of confidence interval with empirical log-likelihood
approximation)

MSE = 1

t

t∑
i=1

⎛
⎝

(
β̂1,i − β1

β1

)2

+
(

β̂2,i − β2

β2

)2
⎞
⎠ ,

where t is the number of repetitions of the Monte Carlo algorithm. In addition, β̂1,i

and β̂2,i are the estimates of general linear model parameters in the ith repetition of
the Monte Carlo algorithm.
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Table 3 Effect of sample sizes, missingness rates, andmissingness mechanisms on inferences about param-
eters of a general linear model with two covariates when Y or X1 contain missing data

Missed variable n 100 150

π Method MSE CPN CPEL MSE CPN CPEL

Y π4 IPW 0.0131 0.9453 .9553 0.0089 0.9523 0.9590

Aug 0.0134 0.9210 0.9623 0.0092 0.9230 0.9687

IA 0.0136 0.9153 0.9587 0.0093 0.9220 0.9700

π5 IPW 0.0127 0.9513 0.9607 0.0085 0.9552 0.9580

Aug 0.0135 0.9247 0.9660 0.0091 0.9237 0.9657

IA 0.0134 0.9253 0.9650 0.0091 0.9230 0.9667

X1 π4 IPW 0.0129 0.9417 .9583 0.0088 0.9503 0.9613

Aug 0.0120 0.9420 0.9503 0.0079 0.9550 0.9587

IA 0.0114 0.9477 0.9560 0.0074 0.9583 0.9660

π5 IPW 0.0119 0.9553 0.9667 0.0079 0.9560 0.9653

Aug 0.0115 0.9537 0.9540 0.0076 0.9537 0.9527

IA 0.0111 0.9553 0.9590 0.0074 0.9557 0.9563

Where 3000 Monte Carlo repetitions are used to estimate some criteria (MSE rational mean square
error, CPN coverage probability by normal approximation, CPEL coverage probability by empirical log-
likelihood approximation)

From Table 3, when the response variable contains missing data, IPW method has
slightly better performance in comparison to two other methods. However, in this case,
the CPN of the IPWmethod is more realistic than the CPN of the augmented methods.
The other criteria in terms of performance are not too different.On the other hand,when
covariate X1 contains missing data, the augmented methods have better performance
in comparison to that of IPWmethod in terms of Bias andMSE. Inmissing at covariate
case, one can prefer the performance of the IA method in comparison to those of the
IPW and Aug methods. Moreover, by increasing the sample size performance of all
methods improve.

The augmented method is used by Wang and Wang (2001) and IA method is intro-
duced by Creemers et al. (2011) to inference about the linear model with missing
on covariates by MAR mechanism. Good performance of these methods is obvious
by results of Table 2 and especially the second part of Table 3 when missing data
happens in covariates. Moreover, when missing happens in covariates, by increasing
the number of covariates their performance improved. However, when missing data
happens in the response variable, the performance of IA method is not as good as the
performance of Aug and IPW methods.

Study 4. Missingness on the response and a covariate
For general linear model of Eq. (1), suppose h(x) = (x1, x22 + log(1+ x2)), where

X1 is a random variable fromNormal distribution N (0, 1) and X2 is a random variable
from Uniform distribution U (−1, 1). Moreover, it is assumed that β = (1, 1).

In this study, we assume thatmissing data in response and covariate x1 are generated
by one of the following mechanisms:
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Case 6. π6(x1,i , x2,i , yi ) = 1/(1 + e−(0.5x1,i+0.5x2,i+0.25yi )),
Case 7. π7(x1,i , x2,i , yi ) = 1/(1 + 0.5|x2,i |e0.25−x1,i yi ),
Case 8. π8(x1,i , x2,i , yi ) = 1/(1 + e−(1.75+0.25x2,i )).

where π6 and π8 are both logistic functions. π6 and π7 follow both fromMNARmech-
anisms and π8 follows fromMARmechanism. By the above missing mechanisms, we
will have 15% missing data on response variable and covariate X1. Moreover, by the
above mechanisms, we have assumed that for ith member of the sample, Y and X1 are
both missed or both observed. In addition, we have considered the different functions
of c(u) as follow:

• c1(u) = x1 + y,
• c2(u) = x1,
• c3(u) = y.

These different functions are considered to see the performance of different logis-
tic function assumption for missingness probability because c(·) function plays an
important role in the estimation of unknown function and specially in the estimation
of tilting parameter. Moreover, the rate of follow-up sample is still 30%. Results of
this study are given in Table 4.

From Table 4, one can conclude that the coverage probability of the IA method is
closed to 0.95 when the missing mechanism has the logistic form. However, by going
away from logistic function, its coverage probability is less than of our expectation
i.e. 0.95. Moreover, IPW and Aug method show good performances in many cases but
the coverage probability of IPW method based on π6 and π8 is more than 0.95. This
is more obvious when the missing mechanism is the sixth mechanism. On the other
hand, the coverage probability of the Aug method decreased similarly to the coverage
probability of the IA method under the seventh mechanism.

By comparing three rows of Table 4, we can say that applying different c(u) does
not more effects in conclusions. However, we can say if c(u) chosen to be function of
the covariates, it can improve the performance of the augmented methods.

5 Real data study

In this section, the evaporative resistance of male Chinese ethnic clothing dataset is
used to fit a general linear model. This dataset is given in Wang et al. (2016) where
the air layer distribution and evaporative resistances of 39 sets of male Chinese ethnic
clothingwere investigated using a sweating thermalmanikin and the three-dimensional
body scanning technique. The methods of measuring the data with more details are
given in Wang et al. (2016).

For this dataset, we investigate the relationship between the clothing total evapora-
tive resistance (response variable Y ) and the total volume of the air entrapped inside
the clothing (covariate variable X ). Wang et al. (2016) have fitted some general lin-
ear model for these variables. They have considered polynomial models with three
parameters but we consider some different model with two parameters. We have stan-
dardized the data to have simple calculations. Moreover, this dataset has been fully
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Table 4 Effect of sample sizes, missingness rates, andmissingness mechanisms on inferences about param-
eters of a general linear model with two covariates when Y and X1 contain missing data

c(u) n 100 150

π Method MSE CPN CPEL MSE CPN CPEL

c1(u) = x1 + y π6 IPW 0.0077 0.9667 0.9793 0.0050 0.9750 0.9865

Aug 0.0079 0.9663 0.9553 0.0050 0.9720 0.9627

IA 0.0172 0.9323 0.9350 0.0120 0.9320 0.9480

π7 IPW 0.0077 0.9500 0.9687 0.0053 0.9483 0.9683

Aug 0.0078 0.9477 0.9310 0.0053 0.9487 0.9213

IA 0.0124 0.9283 0.9107 0.0121 0.9317 0.9213

π8 IPW 0.0068 0.9547 0.9673 0.0043 0.9643 0.9733

Aug 0.0067 0.9540 0.9490 0.0043 0.9650 0.9547

IA 0.0098 0.9336 0.9490 0.0062 0.9417 0.9527

c2(u) = x1 π6 IPW 0.0076 0.9640 0.9780 0.0049 0.9730 0.9867

Aug 0.0078 0.9627 0.9517 0.0050 0.9703 0.9630

IA 0.0173 0.9470 0.9387 0.0128 0.9573 0.9533

π7 IPW 0.0078 0.9522 0.9707 0.0052 0.9540 0.9707

Aug 0.0078 0.9510 0.9336 0.0053 0.9550 0.9287

IA 0.0170 0.9297 0.9213 0.0124 0.9393 0.9273

π8 IPW 0.0067 0.9510 0.9653 0.0044 0.9653 0.9743

Aug 0.0067 0.9520 0.9463 0.0044 0.9643 0.9547

IA 0.0097 0.9363 0.9510 0.0062 0.9460 0.9557

c3(u) = y π6 IPW 0.0077 0.9670 0.9776 0.0051 0.9717 0.9823

Aug 0.0076 0.9670 0.9497 0.0051 0.9710 0.9557

IA 0.0159 0.9183 0.9110 0.0119 0.9117 0.9203

π7 IPW 0.0078 0.9493 0.9660 0.0053 0.9483 0.9683

Aug 0.0078 0.9470 0.9273 0.0053 0.9487 0.9213

IA 0.0168 0.9230 0.9117 0.0112 0.9317 0.9213

π8 IPW 0.0077 0.9567 0.9643 0.0044 0.9620 0.9727

Aug 0.0076 0.9550 0.9470 0.0044 0.9623 0.9520

IA 0.0099 0.9357 0.9467 0.0064 0.9430 0.9483

Where 3000 Monte Carlo repetitions are used to estimate some criteria (MSE rational mean square
error, CPN coverage probability by normal approximation, CPEL coverage probability by empirical log-
likelihood approximation)

observed. Therefore, in order to see the performance of used methods, we generate
missing data by the MNAR mechanism in covariate by the following mechanisms:

Case 9. π9(xi , yi ) = 1/(1 + e−(0.75+0.5xi+1.5x2i +0.5yi )),
Case 10. π10(xi , yi ) = 1/(1 + 0.5e−xi yi ).

Based on the ninthmechanism,wewill have approximately 24.2% rate ofmissing data
in the covariate variable and based on the tenthmechanism,wewill have approximately
24.5% rate of missing data in the covariate variable.We have considered the following
general linear models:
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Fig. 2 Fittedmodels to the standardized dataset of the evaporative resistance ofmaleChinese ethnic clothing

Model 1: y = β0 + β1x
Model 2: y = β0 + β1x2

Model 3: y = β0 + β1sin(2πx)
Model 4: y = β0x + β1x2

In addition to estimation of parameters, we have tested H0 : β = 0 assumption,
where β = (β0, β1)

T . Results of this study are given in Table 5. The standardized data
together with fitted models are given in Fig. 2 and the approximate 95% confidence
regions for parameters of Model 4 are given in Fig. 3.

From Table 5, We can say that Models 2 and 3 cannot be appropriate to this dataset
because we can not reject H0 : β = 0 assumption at level 0.01. In addition, there is
no reason to reject H0 : β = 0 assumption at level 0.001 for Models 1 and 4 and they
can be considered as the useful models. However, in this paper, our aim was not to
find the best model but by our proposed model we have estimated parameters and we
have tested some assumption about the parameters of the general linear model. The
fitted models and the confidence regions of parameters based on model 4 are given in
Figs. 2 and 3, respectively.
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Fig. 3 Confidence regions for parameters of Model 4. The regions with a solid curve, a dotted curve, and
a dashed curve show the IPW, IA, and Aug methods confidence regions, respectively. The plots in a show
the confidence regions based on the ninth mechanism and the plots in b show the confidence regions based
on the tenth mechanism. Moreover, the right shapes are based on the normal approximation and the left
shapes are based on the empirical log-likelihood ratio method

From Fig. 3, the shapes of confidence regions are oval based on the normal approx-
imation. When we use the empirical log-likelihood ratio to construct confidence
regions, their shapes are similar to an ellipse.

6 Discussion

In our simulation studies, we have used the independent Gaussian kernel func-
tions where unknown bandwidth parameters have been estimated by cross-validation
method. The kernel function can be selected differently and it does not affect the infer-
ences. But, choosing the bandwidth parameter is more critical than choosing the kernel
function and it may affect the inferences. Asmentioned, we have used cross-validation
method where its good performances have been studied by many researchers.

The simulation study showed that Our three used methods have acceptable results.
The IPW method has a more stable performance in comparison with the two other
methods. On the other hand, IA method has fewer biases and MSE’s for parameters
in comparison with the other methods. However, our simulation study is based on the
small sample size and by increasing sample size, we have expected an improvement
in the performances of our methods.

Appendix

To achieve our conclusions, we assume that regularity conditions to be hold (Wang
and Wang 2001). These conditions are as follow:
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(1) π(v) is bounded and has partial derivatives up to order 2 almost surely.
(2) Kernel function kh(.), is continuous and is from order r . It is always at least from

order 2.
(3) The density function of Z , f (z), exists and has bounded derivatives up to at least

order 2.
(4) The conditional expectations E(S|Z = z) and E(SST |Z = z) exist and have r

continuous and bounded partially derivatives with respect to v.
(5) For the score function S, E(SST ) exists and is positive definite.
(6) ηn = [nh2r + (nh2d)−1] converges to zero as n goes to infinity. Where d is the

dimension of vector Z .
(7) The matrices, A and B, defined in Sect. 3, are positive definite.

The following Lemma is necessary for proving mentioned theorems in Sect. 3. In any
cases, we just proof parts (b) of lemmas and theorems with details. Proof of the other
parts can be concluded in a similar manner to proof of part (b). However, the details
of proof of part (a) are given anywhere which is necessary.

Lemma 1 Under the regularity conditions, for known values of γ and true parameter
β, we have

(a)
1√
n

n∑
i=1

ψi,I PW (β)
D−→ N (0, A),

1

n

n∑
i=1

ψi,I PW (β)ψT
i,I PW (β)

D−→ B, (28)

(b)
1√
n

n∑
i=1

ψi,Aug(β)
D−→ N (0, A),

1

n

n∑
i=1

ψi,Aug(β)ψT
i,Aug(β)

D−→ A, (29)

(c)
1√
n

n∑
i=1

ψi,I A(β)
D−→ N (0, A),

1

n

n∑
i=1

ψi,I A(β)ψT
i,I A(β)

D−→ A. (30)

Proof For left hand side of part (b), we can write:

1√
n

n∑
i=1

ψi,Aug(β) = 1√
n

n∑
i=1

δi

π̂i (vi )
S(vi , β) +

(
1 − δi

π̂i (vi )

)
m̂(zi , γ )

= 1√
n

n∑
i=1

δi

π̂i (vi )
S(vi , β) +

(
1 − δi

π̂i (vi )

)
m(zi , γ ) + oP (1).

The last equation follows from the fact, m̂(zi , γ ) = m(zi , γ ) + oP (1) where its proof
is given by many authors such as Kim and Yu (2011). Therefore, we can rewrite the
above equation as follow:

1√
n

n∑
i=1

ψi,Aug(β)

= 1√
n

n∑
i=1

δi

πi (vi )
S(vi , β) +

(
1 − δi

πi (vi )

)
m(zi , γ )
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+ 1√
n

n∑
i=1

(
δi

π̂i (vi )
− δi

πi (vi )

)
(S(vi , β) − m(zi , γ ))

+ oP (1) = J1 + J2 + oP (1). (31)

By using equal function of π̂(vi ) from Eq. (10), J2 will be,

J2 = 1√
n

n∑
i=1

δi (1 − α̂(zi )e
γ c(ui ) − 1 + α(zi )e

γ c(ui ))(S(vi , β) − m(zi , γ ))

= 1√
n

n∑
i=1

δi e
γ c(ui )(α̂(zi ) − α(zi ))(S(vi , β) − m(zi , γ ))

= 1√
n

n∑
i=1

δi e
γ c(ui )(S(vi , β) − m(zi , γ ))

( ∑n
j=1(1 − δ j )Kh(zi , z j )∑n
j=1 δ j eγ c(u j )Kh(zi , z j )

− α(zi )

)
.

Also, the last equation follows from Eq. (9). It is easy to prove that:

1

n

n∑
j=1

δ j e
γ c(u j )Kh(zi , z j ) = 1

n

n∑
j=1

δ j

(
1

π(v j )
− 1

)
α−1(z j )Kh(zi , z j ).

Also, based on Eq. (5), by applying Strong Low of Large Numbers (SLLN) and some
mathematical operations, we can conclude:

1

n

n∑
j=1

δ j

(
1

π(v j )
− 1

)
α−1(z j )Kh(zi , z j ) = α−1(zi ) f (zi )E(1 − δ|zi ) + oP (1),

where, f (zi ) is the density function of Zi . Therefore, we can write J2 as follow,

J2 = 1√
n

n∑
i=1

δi e
γ c(ui )(S(vi , β) − m(zi , γ ))

×
(
1

n

∑n
j=1((1 − δ j ) − α(zi )δ j eγ c(u j ))Kh(zi , z j )

α−1(zi ) f (zi )E(1 − δ|zi )

)
+ oP (1)

= 1√
n

n∑
i=1

δi O(vi )(S(vi , β) − m(zi , γ ))

×
(
1

n

∑n
j=1((1 − δ j ) − α(zi )δ j eγ c(u j ))Kh(zi , z j )

f (zi )E(1 − δ|zi )

)
+ oP (1)

= 1

n
3
2

n∑
j=1

n∑
i=1

δi O(vi )(S(vi , β) − m(zi , γ ))

f (zi )E(1 − δ|zi ))
× ((1 − δ j ) − α(zi )δ j e

γ c(u j ))Kh(zi , z j ) + oP (1).
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For enough large sample sizes, by using SLLN for inner summation of the above
equation, it is easy to prove that,

J2 = 1√
n

n∑
j=1

((1 − δ j ) − δ j O(v j ))E(S(V , β) − m(Z , γ )|z j , δ = 0) + oP (1)

= 1√
n

n∑
j=1

((1 − δ j ) − δ j O(v j ))(E(S(V , β)|z j , δ = 0) − m(z j , γ ))

+ oP (1) = oP (1).

By combining J1 and J2 in Eq. (32), we will have:

1√
n

n∑
i=1

ψi,Aug(β) = 1√
n

n∑
i=1

δi

πi (vi )
S(vi , β) +

(
1 − δi

πi (vi )

)
m(zi , γ ) + oP (1).

It is very simple to get that E(J1 + J2) = oP (1) and var(J1 + J2) = A. Therefore,
the left hand side of the part (b) of Lemma 1 can be concluded by the Central Limit
Theorem (CLT). On the other hand, we can write the right hand side of the part (b) of
Lemma 1 as:

1

n

n∑
i=1

ψi,Aug(β)ψT
i,Aug(β)

= 1

n

n∑
i=1

(
δi

π̂(vi )
S(vi , β) +

(
1 − δi

π̂(vi )

)
m̂(zi , γ )

)2

= 1

n

n∑
i=1

(
δi

π̂(vi )
S(vi , β) +

(
1 − δi

π̂(vi )

)
m(zi , γ )

)2

+ oP (1)

= 1

n

n∑
i=1

(
δi

π(vi )
S(vi , β) +

(
1 − δi

π(vi )

)
m(zi , γ )

)2

+ 1

n

n∑
i=1

((
δi

π̂(vi )
S(vi , β) +

(
1 − δi

π̂(vi )

)
m(zi , γ )

)2

−
(

δi

π(vi )
S(vi , β) +

(
1 − δi

π(vi )

)
m(zi , γ )

)2
)

+ oP (1)

= J ∗
1 + J ∗

2 + oP (1),

where J ∗
2 is equivalent to

J ∗
2 = 1

n

n∑
i=1

(
δi

π̂2(vi )
− δi

π2(vi )

)
S2(vi , β)
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+
((

1 − δi

π̂(vi )

)2

−
(
1 − δi

π(vi )

)2
)
m(zi , γ ))2

+
(

δi

π̂(vi )

(
1 − δi

π̂(vi )

)
− δi

π̂(vi )

(
1 − δi

π̂(vi )

))
S(vi , β)m(zi , γ ))

= J ∗
21 + J ∗

22 + J ∗
23.

It is easy to prove that, 1
n

∑n
i=1 |S2(vi , β)| = E(S2(V , β)) + oP (1), 1

n

∑n
i=1 |m2

(zi , β)| = E(m2(Z , β)) + oP (1) and 1
n

∑n
i=1 |S(vi , β)m(zi , β)| = E(|S(V , β)

m(Z , β)|) + oP (1). Furthermore, by the regularity condition (1) and consistency of
π̂ (to prove that π̂ = π + oP (1), it is enough to prove consistency of α̂ because
based on the Eq. (10), π(v) = (1 + α̂(z, γ )eγ c(u))−1. By applying SLLN to α̂ in
Eq. (24), Based on the regularity conditions (2), (3) and (6), we can conclude that
α(z, γ ) = E(δO(Z ,U )|z)

E(δeγ c(U )|z) + oP (1). This with Eq. (8) gives the constancy of α̂.), we can

conclude that sup| δi
π̂2(vi )

− δi
π2(vi )

| = oP (1), sup|(1− δi
π̂(vi )

)2 − (1− δi
π(vi )

)2| = oP (1)

and sup| δi
π̂(vi )

(1 − δi
π̂(vi )

) − δi
π̂(vi )

(1 − δi
π̂(vi )

)| = oP (1). Therefore, we can write:

|J ∗
2 | ≤ |J ∗

21| + |J ∗
22| + |J ∗

23|

≤ 1

n

n∑
i=1

|S2(vi , β)| × sup

(∣∣∣∣ δi

π̂2(vi )
− δi

π2(vi )

∣∣∣∣
)

+ |m2(zi , β)| × sup

∣∣∣∣∣
(
1 − δi

π̂(vi )

)2

−
(
1 − δi

π(vi )

)2
∣∣∣∣∣

+ |S(vi , β)m(zi , β)| × sup

∣∣∣∣ δi

π̂(vi )

(
1 − δi

π̂(vi )

)
− δi

π̂(vi )

(
1 − δi

π̂(vi )

)∣∣∣∣ .

Thus, by the above notations, we can conclude that J ∗
2 = oP (1). Therefore, we will

have:

1

n

n∑
i=1

ψi,Aug(β)ψT
i,Aug(β) = 1

n

n∑
i=1

(
δi

π(vi )
S(vi , β) +

(
1 − δi

π(vi )

)
m(zi , γ )

)2

The above equation by applying SLLN gives the right hand side of Lemma 1(b). As
mentioned, proof of part (c) is very similar to the proof of part (b), therefore we ignore
it. Also, for part (a) in a similar way to part (b), we can write:
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1√
n

n∑
i=1

ψi,I PW (β) = 1√
n

n∑
i=1

δi

π̂i (vi )
S(vi , β)

= 1√
n

n∑
i=1

δi

πi (vi )
S(vi , β) +

(
δi

πi (vi )
− δi

π̂i (vi )

)
S(vi , β).

By applying the same operations used for J2 to the second summation of right hand
side of the above equality, we can write:

1√
n

n∑
i=1

ψi,I PW (β) =
n∑

i=1

δi

πi (vi )
S(vi , β)

+ 1√
n

n∑
i=1

((1 − δi ) − δi O(v j ))E(S(V , β)|zi , δ = 0)

+ oP (1) = oP (1).

By replacing equivalent functions of O(vi ) and E(S(V , β)|zi , δ = 0), and some
simple mathematical operations we will have:

1√
n

n∑
i=1

ψi,I PW (β) =
n∑

i=1

δi

πi (vi )
S(vi , β) +

(
1 − δi

πi (vi )

)
m(zi , β) + oP (1).

Therefore, by the above equation and CLT, we can conclude the left hand side of
Lemma 1(a). On the other hand, we have:

1

n

n∑
i=1

ψi,I PW (β)ψT
i,I PW (β) = 1

n

n∑
i=1

(
δi

π̂(vi )
S(vi , β)

)2

= 1

n

n∑
i=1

(
δi

π(vi )
S(vi , β)

)2

+ 1

n

n∑
i=1

(
δi

π(vi )
− δi

π̂(vi )

)
S(vi , β))2

S(·) and π(·) are bounded and π̂ − π = oP (1). Therefore, we can conclude that
second summation of the above equality is equal to oP (1). Therefore, we can write:

1

n

n∑
i=1

ψi,I PW (β)ψT
i,I PW (β) = 1

n

n∑
i=1

(
δi

π(vi )
S(vi , β)

)2

+ oP (1).

Now by applying SLLN to right hand side of the above equation, we can conclude the
right hand side of Lemma 1(a). ��
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Lemma 2 Under the regularity conditions, for estimated values of γ̂ from validation
sample and true parameter β, we have

(a)
1√
n

n∑
i=1

ψi,I PW (β)
D−→ N (0, Ã),

1

n

n∑
i=1

ψi,I PW (β)ψT
i,I PW (β)

D−→ B, (32)

(b)
1√
n

n∑
i=1

ψi,Aug(β)
D−→ N (0, Ã),

1

n

n∑
i=1

ψi,Aug(β)ψT
i,Aug(β)

D−→ A, (33)

(c)
1√
n

n∑
i=1

ψi,I A(β)
D−→ N (0, Ã),

1

n

n∑
i=1

ψi,I A(β)ψT
i,I A(β)

D−→ A. (34)

Proof Also in this case, we only prove the part (b). Therefore, for Augmented method
we have:

1√
n

n∑
i=1

ψi,Aug(β) = 1√
n

n∑
i=1

δi

π̂i (vi , γ̂ )
S(vi , β) +

(
1 − δi

π̂i (vi , γ̂ )

)
m̂(zi , γ̂ ),

define,

Ji (γ ) = δi

π̂(vi , γ )
S(vi , β) +

(
1 − δi

π̂i (vi , γ )

)
m̂(zi , γ ) i = 1, . . . , n,

Therefore we will have:

1√
n

n∑
i=1

ψi,Aug(β) = 1√
n

n∑
i=1

Ji (γ̂ )

= 1√
n

n∑
i=1

(Ji (γ ) + (Ji (γ̂ ) − Ji (γ )))

= J1 + J2 + 1

n

n∑
i=1

∂ Ji (γ )

∂γ
|γ=γ0

√
n(γ̂ − γ ). (35)

In the above equation, J1 and J2 are defined the same as that of proof of Lemma 1 and
the last statement is concluded from the Intermediate Value Theorem. On the other
hand, we have,

∂ Ji (γ )

∂γ
= δi

(
1 − 1

π̂(vi , γ )

)
(c(ui ) − m̂∗(zi , γ ))(S(vi , β) − m̂(zi , γ ))

+
(
1 − δi

π̂(vi , γ )

)
(E(S(V , β)c(U )|zi , δ = 0) − m̂∗(zi , γ )m̂(zi , γ )).
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By SLLN we will have:

1

n

n∑
i=1

∂ Ji (γ )

∂γ

= E

(
δ

(
1

π(V , γ )
− 1

)
(U − m∗(Z , γ ))(S(V , β) − m(Z , γ ))

)
+ oP (1)

= E((1 − π(V , γ ))(U − m∗(Z , γ ))(S(V , β) − m(Z , γ ))) + oP (1)

= H + oP (1).

On the other hand, for
√
n(γ̂ − γ ), we will have:

n∑
i=1

ri (1 − δi )(c(ui ) − m̂∗(zi , γ̂ )) = 0.

By rewriting and using the Intermediate Value Theorem, we obtain that

n∑
i=1

ri (1 − δi )(c(ui ) − m̂∗(zi , γ0)) −
n∑

i=1

ri (1 − δi )
∂m∗(zi , γ )

∂γ
|γ=γ0 (γ̂ − γ ) = 0,

where by some mathematical operations, we can conclude from the above equation
that:

√
n(γ̂ − γ ) =

{
1

n

n∑
i=1

ri (1 − δi )
∂m∗(zi , γ )

∂γ
|γ=γ0

}−1

× 1√
n

n∑
i=1

ri (1 − δi )(c(ui ) − m̂∗(zi , γ0)) = Q−1
1 Q2, (36)

where,

Q1 = 1

n

n∑
i=1

ri (1 − δi )(Ê(c2(U )|zi , δ = 0) − m̂∗2(zi , γ ))

= E(r(1 − δ)(E(c2(U )|z, δ = 0) − m∗2(Z , γ ))) + oP (1) = M + oP (1).

For Q2, we have

Q2 = 1√
n

n∑
i=1

ri (1 − δi )(c(ui ) − m∗(zi , γ )) + ri (1 − δi )(m
∗(zi , γ ) − m̂∗(zi , γ ))

= 1√
n

n∑
i=1

ri (1 − δi )(ui − m∗(zi , γ ))
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+ 1√
n

n∑
i=1

ri (1 − δi )(m
∗(zi , γ ) − m̂∗(zi , γ )) = Q21 + Q22.

For Q22, it is easy to prove that

Q22 = 1√
n

n∑
i=1

ri (1 − δi )

∑n
j=1 δ j eγ c(u j )(m∗(zi , γ ) − c(u j ))Kh(zi , z j )∑n

j=1 δ j eγ c(u j )Kh(zi , z j )

= − 1

n
3
2

n∑
i=1

n∑
j=1

ri (1 − δi )
δ j eγ c(u j )(m∗(zi , γ ) − c(u j ))Kh(zi , z j )

α−1(zi ) f (zi )E(1 − δ|zi , δ = 0)
+ oP (1).

By applying SLLN and some mathematical operations for inner summation of the
above equation, we can conclude that:

Q22 = − 1√
n

n∑
j=1

δ j e
γ c(u j )E

(
r(1 − δ)(c(U ) − m∗(Z , γ ))Kh(Z , z j )

α−1(zi ) f (zi )E(1 − δ|zi , δ = 0)

)
+ oP (1)

= − 1√
n

n∑
j=1

δ j E(r |δ = 0)

(
1

π(v j )
− 1

)
(u j − m∗(z j , γ )) + oP (1).

Therefore,

Q2 = Q21 + Q22 = 1√
n

n∑
i=1

(ri (1 − δi ) − δi E(r |δ = 0)

×
(

1

π(vi )
− 1

))
(c(ui ) − m∗(zi , γ )) + oP (1). (37)

By combining Q1 and Q2 in Eq. (37), it is concluded that

√
n(γ̂ − γ ) = M−1 1√

n

n∑
i=1

(ri (1 − δi ) − δi E(r |δ = 0)

×
(

1

π(vi )
− 1

))
(c(ui ) − m∗(zi , γ )) + oP (1). (38)

Finally by inserting Eq. (39) in Eq. (36) and using the obtained details from Eq. (36),
we have:

1√
n

n∑
i=1

ψi,Aug(β) = 1√
n

n∑
i=1

{ δi

π(vi )
S(vi , β) +

(
1 − δi

π(vi , γ )

)
m(zi , γ )

+ HM−1
(
ri (1 − δi ) − δi E(r |δ = 0)

(
1

π(vi , γ )
− 1

))
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× (c(ui ) − m∗(zi , γ )).

Therefore, the left hand side of Lemma 2(b) can be concluded by applying CLT.Where
Ã is the variance of the following variable,

η = δ

π(V )
S(V , β) +

(
1 − δ

π(V )

)
m(Z , γ ) + HM−1

×
(
r(1 − δ) − δE(r |δ = 0)

(
1

π(V )
− 1

))
(c(U ) − m∗(Z , γ )). (39)

In a similar way to the proof of right hand side of Lemma 1(b), we can show,

1

n

n∑
i=1

ψi,Aug(β)ψT
i,Aug(β) = 1

n

n∑
i=1

(
δi

π(vi )
S(vi , β) +

(
1 − δi

π(vi )

)
m(zi , γ )

)2

Therefore, By the above equation and SLLN, we can conclude the right hand side
of Lemma 2(b). Also, The proof of part (c) is very similar to part (b), therefore we
ignore it. Moreover, part (a) obtains in a similar way to proof of Lemma 1(a) and for
simplicity, we ignore its details. ��

Proof of Theorem 1

For the augmented method, we have:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T1,Aug = 1
n

∑n
i=1

∑n
j=1 Wi j,0S(z j ,u j ,β)

1+∑n
j=1 Wi j,0λ

T S(z j ,u j ,β)
= 0

T2,Aug = 1
n

∑n
i=1

∑n
j=1 Wi j,0λ

T h(x j )hT (x j )

1+∑n
j=1 Wi j,0λ

T S(z j ,u j ,β)
= 0.

(40)

Taylor expansion of above equations at (β, 0) are as follow:

⎧⎪⎨
⎪⎩
0 = T1,Aug = T1,Aug(β, 0) + ∂T1,Aug(β,0)

∂β
(β̂ − β) + ∂T1,Aug(β,0)

∂λ
(λ̂ − 0) + oP (τn)

0 = T2,Aug = T2,Aug(β, 0) + ∂T2,Aug(β,0)
∂β

(β̂ − β) + ∂T2,Aug(β,0)
∂λ

(λ̂ − 0) + oP (τn),

(41)
where in Eq. (42) after obtaining derivatives with respect to (β̂, λ̂), they are eval-
uated in (β, 0). Also τn =‖ β̂ − β ‖ + ‖ λ̂ ‖. Note that T1,Aug(β, 0) =
1√
n

∑n
i=1

∑n
j=1 Wi j,0S(z j , u j , β) and T2,Aug(β, 0) = 0, so we can conclude from

last equation that:

[
λ̂

β̂ − β

]
= D−1

[− 1
n

∑n
i=1

∑n
j=1 Wi j,0S(z j , u j , β) + oP (τn)

oP (τn)

]
, (42)
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where in Eq. (43),

D =
[

∂T1,Aug(β,0)
∂λ

∂T1,Aug(β,0)
∂β

∂T2,Aug(λ,0)
∂λ

∂T2,Aug(β,0)
∂β

]
|(β,λ)=(β,0)

=
[

− 1
n

∑n
i=1

∑n
j=1 ψi,Aug(β)ψT

i,Aug(β) 1
n

∑n
i=1

∂ψi,Aug(β)

∂β
1
n

∑n
i=1

∂ψi,Aug(β)

∂β
0

]
, (43)

where, 1n
∑n

i=1
∂ψi,Aug(β)

∂β
= 1

n

∑n
i=1

δi
π(zi ,γ )

h(xi )hT (xi )+(1− δi
π(zi ,γ )

)E(h(X)hT (X)|
zi , δ = 0). Therefore,

D−1 = − 1(
1
n

∑n
i=1

∂ψi,Aug(β)

∂β

)2

×
[

0 − 1
n

∑n
i=1

∂ψi,Aug(β)

∂β

− 1
n

∑n
i=1

∂ψi,Aug(β)

∂β
1
n

∑n
i=1

∑n
j=1 ψi,Aug(β)ψT

i,Aug(β)

]
. (44)

Now, by combining Eqs. (43) and (45) and some simple mathematical operations, we
can conclude that:

√
n(β̂Aug − β) =

(
1

n

n∑
i=1

∂ψi,Aug(β)

∂β

)−1 (
1√
n

n∑
i=1

ψi,Aug(β)

)
+ oP (1)

=
(
1

n

n∑
i=1

δi

π(zi , γ )
h(xi )h

T (xi )

+
(
1 − δi

π(zi , γ )

)
E(h(X)hT (X)|zi , δ = 0))

)−1

× 1√
n

n∑
i=1

ψi,Aug(β) + oP (1). (45)

Equation (46) and Lemma 1(b) by using SLLN give the following result:

√
n(β̂Aug − β)

D−→ N (0, T−1AT−1). (46)

This proves the second part of Theorem 1(a) for the augmented method. To prove sec-
ond part of Theorem 1(b), consider Taylor expansion of second order for the empirical
log-likelihood ratio of augmented method with respect to parameter λ at 0, i.e.,

l̂ Aug(λ) = l̂ Aug(λ)|λ=0+(λ−0)T
∂ l̂ Aug(λ)

∂λ
|λ=0+(λ−0)T

∂2l̂ Aug(λ)

2∂λ2
|λ=0(λ−0)+o(1),

(47)
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where,
∂ l̂ Aug(λ)

∂λ
= 2

∑n
i=1

ψAUg(β)

(1+λT ψAUg(β))
and

∂2 l̂ Aug(λ)

∂λ2
= −2

∑n
i=1

ψAUg(β)ψT
AUg(β)

(1+λT ψAUg(β))2
.

Therefore, the empirical log-likelihood ratio will be as follow:

l̂ Aug(λ) = 2λT
n∑

i=1

ψi,Aug(β) − λT
n∑

i=1

ψi,Aug(β)ψT
i,Aug(β)λ + oP (1), (48)

λ̂ is the solution of
∑n

i=1
ψi,Aug(β)

(1+λT ψi,Aug(β))
= 0, thus by expanding of this equation we

can get λ̂ as follow:

0 =
n∑

i=1

ψi,Aug(β)

(1 + λTψi,Aug(β))
=

n∑
i=1

ψi,Aug(β)+λT
n∑

i=1

ψi,Aug(β)ψT
i,Aug(β)λ+oP (1).

(49)
Therefore for enough large sample size, we will have:

λ̂ =
(

n∑
i=1

ψi,Aug(β)ψT
i,Aug(β)

)−1 (
n∑

i=1

ψi,Aug(β)

)
+ oP (1). (50)

Finally by combining Eq. (49) with Eq. (51), we conclude that

l̂ Aug =
(

n∑
i=1

ψi,Aug(β)

)T (
n∑

i=1

ψi,Aug(β)ψT
i,Aug(β)

)−1 (
n∑

i=1

ψi,Aug(β)

)
+ oP (1).

(51)
Lemma 1(b) and the relation between normal distribution and chi-square distribution
together with the above equation give the second part of Theorem 1(b). The proof of
third parts of Theorem 1(a) and (b) are very similar to the proof of second parts of this
theorem, therefore we ignore it. By the similar arguments used in the proof of the first
part of Theorem 1(a), we can write following equalities in IPW case:

√
n(β̂I PW − β) =

(
1

n

n∑
i=1

∂ψi,I PW (β)

∂β

)−1 (
1√
n

n∑
i=1

ψi,I PW (β)

)
+ oP (1)

=
(
1

n

n∑
i=1

δi

π(zi , γ )
h(xi )h

T (xi )

+
(
1 − δi

π(zi , γ )
E(h(X)hT (X)|zi , δ = 0)

))−1

× 1√
n

n∑
i=1

ψi,I PW (β) + oP (1). (52)
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The above equation and Lemma 1(a) with CLT give the first part of Theorem 1(a).
Moreover, In a similar way, we can write:

l̂ I PW =
(

n∑
i=1

ψi,I PW (β)

)T (
n∑

i=1

ψi,I PW (β)ψT
i,I PW (β)

)−1

(
n∑

i=1

ψi,I PW (β)

)
+ oP (1). (53)

Now, the first part of Theorem 1(a) follows by the above equation and Lemma 1(a).

Proof of Theorem 2

Proof of Theorem 2 follows by the same methods used in Theorem 1 by applying
Lemma 2 instead of Lemma 1. Therefore, we ignore the details of the proof of The-
orem 2. Also, needing to Lemma 2 in proof of Theorem 2 caused to have different
asymptotic distributions in comparison to Theorem 1.
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