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Abstract

In this paper, we utilize a general linear model for analyzing data with missing values
in some covariates and response variable. Our aim is to fit a general linear model and
to construct a confidence region for the parameters of the general linear model based
on the empirical likelihood ratio function. Also, we assume that missing data may
happen in covariates or in response variable or in both of them with missing not at
random mechanism where the probability of missing a datum is specified by a logistic
model. We use inverse probability weights and an augmented method as the auxiliary
condition of empirical likelihood to estimate parameters of the general linear model.
Asymptotic properties of the empirical log-likelihood ratio are investigated whether
the exponential tilting parameter is known or estimated by the follow-up sample. The
asymptotic normality of estimators is also proved. Some simulation studies are used to
illustrate the performance of our model for different sample sizes. Also, a real dataset
is studied by the proposed methods.
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1 Introduction

In most regression studies, the relationship between the response variable and the
covariates is not linear and fitting a linear model is not appropriate. To solve this
problem, we use a general version of the linear model, the general linear model. A
general linear model represents the relationship between a response Y and a vector
function of covariates X with dimension m that can be formulated as follow:

Y =h"(X)B +e, (1)

where /4 (-) is a known vector function of dimension d, T is used for transposing, 8 is
an unknown parameter vector of dimension d and € is the sampling error with mean
zero and constant variance. Also, it is assumed that the conditional expectation of €
follows the conditions E(e|X = x) = 0 and E(62|X =X) < 00.

In this paper, we assume that missing data can be occurred both in covariates
and in response variables but it is necessary to have at least one variable which is
fully observed because to estimate unknown functions based on kernel method, it is
necessary to have at least one variable which is fully observed (at least response variable
or one of the covariate variables). It is assumed that V contains all the variables, Z
contains fully observed variables and U contains incomplete variables. Therefore, the
data for the ith individual will be as follow:

(xi, yi,8) = (vi, 8;) = (zj,ui, 8), i=1,...,n,

where §; = 1 if the ith individual of variable U is observed and otherwise §; = 0.

By Rubin’s classification (1976), we say missing mechanism is MCAR if the prob-
ability of observing a datum does not depend on the data, missing mechanism is
MAR if the probability of observing a datum does not depend on the missing data
and missing mechanism is MINAR if the probability of observing a datum depends on
the missing and observed data. Most researchers consider missing at random (MAR)
mechanism as the common mechanism for statistical inferences with missing data.
However, missing mechanism depends on missed data in many cases such as survey
data, longitudinal data, clinical data etc., and using missing not at random mechanism
can be more reasonable. Moreover, MNAR mechanism is more general than MAR
mechanism and MAR mechanism can be regarded as a submodel of MNAR mecha-
nism. Throughout this article, we assume the MNAR mechanism as a mechanism of
the missing data.

In MNAR mechanism, missingness probability is unknown and moreover, the prob-
ability of observing or missing an individual depends on the variable that contains
missing data, for these reasons estimating of missingness probability is more complex
than that of MAR mechanism. For this reason, Kim and Yu (2011) determined a semi-
parametric method to estimate mean function based on the exponential tilting model
which is considered for the missingness probability. Zhao et al. (2013) improved the
Kim and Yu (2011) method by using more auxiliary information in the empirical
likelihood ratio function. Furthermore, Tang and Zhao (2013) used the empirical log-
likelihood ratio to inference about the nonlinear regression models. On the other hand,
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Niu et al. (2014) used this empirical method for fitting a linear model. They showed
that the log-likelihood ratio is asymptotically convergent to a weighted chi-square dis-
tribution and ./7-consistent estimators of parameters are asymptotically convergent
to the normal distribution. In this way, they have constructed the confidence intervals
based on the empirical log-likelihood ratio which is introduced by Owen (1988, 1990).
Also, the improved version of this method is given by Zhao et al. (2015) to inference
about the regression model. Since in the empirical log-likelihood method, the confi-
dence interval does not require prior assumptions and pivotal, it has a widespread use
in statistical inferences. Also, in Owen’s mentioned method, confidence regions are
constructed based on an appropriate region that is dominated by the empirical log-
likelihood ratio. In addition, Niu et al. (2014) have considered a simple linear model
where missing data happens by MNAR mechanism in the response variable and they
have considered some imputation methods to deal with missing data problems.

In this paper, we consider a general linear model where missing data can occur in
the covariates and response variables by an MNAR mechanism. We use three auxiliary
conditions of estimating equations in empirical likelihood functions to inference about
the general linear model. In this way, we apply the similar methods used in Creemers
et al. (2011) to add partly observed data in inferences. Also, we estimate exponential
tilting parameter from a follow-up sample. In this paper, we have assumed that missing
data follows from a logistic model. To see inferences without this assumption see also
Genback et al. (2015) where they inference about a regression model with missing
data by a nonignorable mechanism.

The rest of this paper is organized as follow. In Sect. 2, we introduce three methods
to estimate parameters of the general linear model and we will illustrate the empirical
details of this three methods. In Sect. 3, we will present asymptotic properties of the
three methods. In Sect. 4, some simulation studies are used to see the performance of
the different methods under the different missing mechanism schemes and different
sample sizes assumptions. In Sect. 6, the details of some points are discussed. Also,
the details and proofs of the theorems are given in the Appendix.

2 Methods

In this section, we propose three methods for analyzing general linear model with miss-
ing data by MNAR mechanism where missing data occurs in covariates or response
variable. To achieve this aim, it is enough to have at least one variable without missing
data. Our aim is to estimate parameters of the general linear model and then construct-
ing the appropriate confidence intervals for the parameters of this model.

Let  (v;) be the probability of observing the ith datum. Therefore, 7 (v;) takes the
following form under the MNAR assumption:

w(vi) = Pr(8; = l|x;,y;) = Pr(§; = l|zj,u;) = Pr(§; = 1|v;), i=1,...,n.
(2)

In real data analyses, 7w (v;) is unknown and we have to estimate it. It seems that
considering a model for missingness pattern is necessary in MNAR case. As Kim and
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Yu (2011) done, we consider the following logistic model for missing data probability:

8 +oc(u;)

7)) = Pr =1z, u) = 1 4+ e8Gitredpe(u;)’

i=1,...,n, 3)

where g(-) is an unknown function, ¢ is an unknown parameter and c(-) is areal-valued
function of variables with missing data. The conditional odds of §; can be written as
follow:

Pr(é; =0lzi,ui) 1
Pr(§; = lzj,u;)  m(v;)

O(zi,uj) = — 1= 8Gtrew —j — 1 n (4)

where y = —¢. On the other hand, based on the exponential tilting model which is
mentioned on Kim and Yu (2011), we can write:

evei)

E(eveWi|z;, 8 = 1)

Jouilzi) = fwilzi), i=1,...,n, (5)

where for § = 0, fo(u|z) is the conditional density of U given Z and similarly,
f1(u|z) is the conditional density of U given Z for § = 1. Also for simplicity, we
define ae(z;, y) = 2E:4)  Under the logistic model of Eq. (3) and exponential tilting

evel)
model of Eq. (5), by replacing O(Z;, U;) with n(lv~) — 1 and some mathematical
operations, it is easy to prove that:

5.
E@®;0(Z;,U)|Zi =z)=E (— — 812 = z,-)

(Vi)
=1-E@Gi|Zi =zi)
=E(—-68Z =z). (6)

in addition, by replacing O (Z;, U;) witha(Z;, y)e?<®) and some mathematical oper-
ations, we can conclude that:

E@i0(Zi, UD|Zi = z) = a(Zi, y)E8ie” "D\ Z; = z;). (7
Therefore, by combining Egs. (6) and (7), we can conclude,

a(Zi, Y)E@Gie" ")\ Z; = ;) = E(1 — 8;|Zi = z;)
=E0Z;,U)\|Z; = z;). 8)

Thus, based on Eq. (8), an empirical estimator of o (z;, ) will be as:

Z}}:l(l —8)Kp(z; — zi)
Z’;’:l 5j€yc(“/')Kh(Zj -z

a@zi,y) = &)
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where K} (+) is a kernel function with smoothing parameter 4. Also in a similar way,
an empirical estimator of 77 (v;) based on &(z;, ¥) can be obtained as:

7 (i) = {1+ @z, y)e’ @)1, (10)

Above estimators are valid when y is known. It is considered known in Rotnitzky et al.
(1998) to access the sensitivity of the analysis. But, in most studies it is unknown and we
have to estimate it. An estimation of tilting parameter y can be found parametrically by
an estimating equation based on a follow up sample. For more details about validation
sample and estimation of tilting parameter see also Kim and Yu (2011). The estimating
equations to find y is given in the next section.

2.1 Empirical likelihood inference based on the inverse probability weights

We assume that auxiliary random vectors based on the inverse probability weights to
be as follow: 5

Viapw(B) = ——S@i. p). i=1....n, (1D

7 (v;)

where S(v;, B) = S(yi, xi, B) = h(x;)(yi — hT(x,-),B), is the score function which is
deduced based on the ordinary least square method and it can be obtained from the other
estimating methods such as maximum likelihood method. By the above definition, we
can formulate the empirical likelihood model in a simple way. It is easy to prove that
E(Yi,1pw(B)) = 0. Therefore, the inverse probability weighted empirical likelihood
(IPWEL) function can be defined as follow:

Lipw(B) = sup { [ [npilpi = 0.> pi=1Y piviipw()=0¢.  (12)

i=1 i=1 i=1

where p; is the probability mass of the ith member of the sample and as men-
tioned in the above equation ) '_, p; = 1. Without considering auxiliary condition,
i1 pivi.rpw(B) = 0, in the above IPWEL function, we can estimate p; = % The
inverse probability weighted log-likelihood ratio (IPWLR) function for parameter g
with some corrections (minus twice of the empirical log-likelihood ratio to obtain its
asymptotic distribution) will be as follow:

lipw(B) = —2sup { Y log(npi)lpi >0, pi=1,Y_ pivi.ipw(B) = 0} :
i=1 i=1 i=1
(13)

Therefore, by Lagrange method, one can obtain that, p; = where A

D S
) o c ] ] — n(+A T rpw (B)) )
is a Lagrange multiplier real valued vector with dimension d. The IPWLR function

will be as follow:

lipw(B) =2 log(1+ ¥ 1pw(B)). (14)

i=1
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The empirical maximum likelihood estimator of 8 by IPW method can be calculated
by maximizing —I; pw (8) over all domain of 8 and A. Based on the IPW method, we
estimate B;pw with Lagrange multiplier method by using the following estimating
equations:

1 Yi.ipw(B) _
Tiipw = n Zi:l ATy 1pw(B) 0

_ 1y ASih()h" (x)(B)
Lypw = n Zi:l 7)) (A+A Ty 1pw(B) 0.

15)

2.2 Empirical likelihood inference based on the augmented method

In IPWEL inferences, we have ignored the partly missed data where is partly observed
too. This may decrease the efficiency of our estimators. for example, the big missing-
ness probability of a datum may depend on the magnitude of the data. In this case, we
may loss the data with large values or with small values. On the other hand, we loss
partly observed data that is useful in our inferences and may increase the variance of
the estimator. To see more details about missing data effect on efficiency of estimators
see also Carpenter et al. (2006). Therefore, we consider two other methods where
these methods can use the informations of the partly observed data. We also use an
augmented method that augments expectation of auxiliary mean score vector by an
appropriate weight to the inverse probability weight auxiliary condition as follow:

(Si 51' N .
Vi Aug(B) = S(vi, B) + (1 - )m(Zi, y), i=1....n, (16)

7 (v;) 7 (v;)

where m(z;,y) = E(S(vi, B)|Z; = zi, 6 = 0). In a similar way to Kim and Yu
(2011) and the same arguments used in Niu et al. (2014), we can estimate m(z;, )
semiparametrically as follow:

R Y188 uy, B D Ky(zj — zi)
m(z;, V) = = jn - jL‘(L[-) ! : , i=1,...,n. (17
> i1 8je” M Ky(zj —zi)

Also we can rewrite ; A, (8) based on the score function S(v;, B), as follow:

Vi aug(B) = Y Wij.oS(i, B), (18)

j=1

where by considering §;; as a Kronecker multiplier,

S: S YeWD g, (7: — 7
Wij,() _ 8] { ij + <1 _ i ) Z e h(Z] Zi) . (19)

fr(vj) 7 (v;) ’}:1 5jeVC(”j)Kh(Zj —zi)
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Therefore, the augmented empirical log-likelihood ratio (AELR) can be defined as
follow:

Laug(B) = —2sup { Y "log(np)lpi > 0, Y pi =1, pivii aug(B) =0¢ . (20)

i=1 i=1 i=1

By Lagrange method it is easy to obtain that the AELR function is as:

Laug(B) =2 ) log(1 + Asi aug (B))- 21

i=1

Moreover, we can rewrite the AELR function based on the score function as follow:

LagB) =2 log [ 1+ Wij0r"S(zj.u;. p) | - (22)

i=1 j=1

The empirical maximum likelihood estimator of 8 based on the augmented method
can be obtained by maximizing —I,,(B8) over all domain of B and A. Based on
the augmented method, we estimate B jointly with Lagrange multiplier by using the
following two estimating equations:

n

1 ~n Y1 WijoS(zj.uj.B)

Tipug = 30 J =0
1,Aug n Zl_l ]+Z;€=1 Wij,O)LTS(Zj,Mj,,B)

Ly i Wijor"heph” () 0

n =11y Wi odTSGzjoug ) —

(23)

T2,Aug =

2.3 Empirical likelihood inference based on the improved augmented method

Again we consider augmented method, but we estimate mean score function, m(Z, y)
as follow:

" 8iSziui, BV UKy (zi — zi)
r?z(zl-,y):Z"1 R L i 1,n (b
Zj:l 5je)/c(u])](h(zj —z)

The difference between estimators given in Egs. (17) and (24) is obvious where in the
above estimator the observed variables of estimators remain without change (see z; in
S(-) which is the observed part of the ith individual and u; is the missing part of the ith
individual). This method is used by Creemers et al. (2011) to estimate parameters of
a linear model with missing at random covariates. Also, in their studies, this method
had a good performance. We call this method, Improved Augmented (IA) method. It
is easy to obtain that the improved augmented empirical log-likelihood ratio (IAELR)
is as follow:
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aB) =2 log [ 1+ Wijor"SGiuj, B |- (25)

i=1 j=1

The empirical maximum likelihood estimator of 8 based on the IA method can be
obtained by maximizing —/y 4 (8) over all domain of 8 and A. Based on the IA method,
we estimate § jointly with Lagrange multiplier by using the following two estimating
equations:

T _ 1 Zn Zi}:l WijoS(zi.uj,B) -0
BIA = 2= TS Wij oSG )

(26)

T _ 1 Zn 23:1 Wij 0rT h(xi obs X j mis)hT (Xi obs X mis) -0
2, 1A n i=1 1+Zj‘=l Wij.(J)\TS(Zj,Mj»B) =Y,

where X, 1s the fully observed vectors of covariates and X, is the partly missed
vector of covariates.

3 Theoretical results

In this section, we will study asymptotic properties of the three discussed methods.
We will determine two theorems in the cases that tilting parameter is known and
unknown. We will see asymptotic normality of proposed estimators and asymptotic
convergence of the empirical log-likelihood ratios to a chi-square distribution. Also,
we have assumed that the regularity conditions given in the Appendix hold.

3.1 Asymptotic inference with known tilting parameter

In this section, we assume that y is known. For simplicity, we define the following
notations:

A=E@xNZ, O)hXOh (X)) + (1 — 7 Y(Z, U)E*(h(X)e|Z = 2,8 = 0)),
T = E(h(X)hT (X)), B=E@ Yz, \)hX)h" (X)e?).

Theorem 1 Suppose the regularity conditions given in the Appendix hold. For true
values of B and known tilting parameter, we have:

@ vaBrpw — B) —> NO. T AT,
S1Baug — B) > N, T AT,
SnBia—B) 2> NO, T AT,
®) lpw(B.y) > pLIPwXT L+ o2 1PwX T+ + parPw Xy

A D
Taug(B,v) — X7,

@ Springer



Empirical likelihood inference in general linear...
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Fig. 1 Confidence regions in one parameter (left plot) and two parameters (right plot) cases

A D
l1aB,y) — X3,

where Xﬁ ;s i = 1,...,d are the independent variables from the chi-square dis-
tribution with one degree of freedom, p; 1pw’s, i = 1,...,d are the eigenvalues of
B~'A and Xf is the random variable from the chi-square distribution with d degrees
of freedom.

We can use Theorem 1(a) to construct a confidence region for parameters of general
linear model based on the different pivotals and we can test the hypothesis such as
Hy : B = Bp at level . We call the inferences based on Theorem 1(a), normal
approximation (NA) inferences. The part (b) of Theorem 1 gives the empirical log-
likelihood ratio properties of the mentioned methods. We can use Theorem 1(b) to
inference about parameters of the general linear model without needing to have any
pivotals where an approximate 100(1 — «)% confidence region for § consist of all
possible Byp’s for which the null hypothesis Hy : B = Bo would not be rejected
at level «. The approximate 100(1 — )% confidence region by IPW method can
be constructed by Clrpw = {Bllipw(B,y) < Zle i, 1pwX1,i2(1 — @)}, where
Xﬁi(l —a)’s,i = 1,...,d are the (1 — &) quantile of the Chi-square distribution
with one degree of freedom. Also, the confidence region for parameters of the other
methods can be constructed in the same way. To have a better perception about the
confidence regions without using any pivotals by the empirical log-likelihood ratio
method, see also Fig. 1. The left curve in Fig. 1 shows the empirical log-likelihood
ratio for the ;eneral linear model with one parameter that cut off by the vertical
line, I = )i ¢ Xd,,-z( I — «). The cut points give the beginning and the end of
the approximate 100(1 — «)% confidence interval. Also, consider the right shape in
Fig. 1 where shows the empirical log-likelihood ratio for the general linear model
with two parameters. The confidence region obtained by mapping of the intersection
between the empirical log-likelihood shape and the plane, / = Z?:l ciXpi2(1 —a)
to coordinate plane of 81 and 8. Where ¢;’s and d are same as to those defined in
Theorem 1.
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The proof of Theorem 1 is given in the Appendix. Also, appropriate and consistent
estimators of unknown statistics are given in the Appendix.

3.2 Asymptotic inference with unknown tilting parameter

Naturally, in statistical inferences, tilting parameter is unknown and we have to esti-
mate it. Using validation sample is a common way to estimate tilting parameter. We
estimate tilting parameter from the following consistent estimating equations,

n

D ril = 8)(c(ui) — m* i, y)) =0, 27)

i=1

where m*(z;, v) = E(c(U)|z;, § = 0), r; is an indicator function which takes value
lifthe uniti, i = 1,..., n belongs to the follow-up sample and otherwise it is equal
to 0. The validation sample is randomly selected from set of nonrespondents and the
response are obtained for all the elements in validation sample. Also, the validation
sample size is a pre-specified proportion of dataset, 7.

One can estimate tilting parameter by using the conditions such as E( % [x,y) =
1. However, this condition gives an unbiased estimation of tilting parameter but esti-
mation of tilting parameter with this condition is not appropriate because its variance
is big and cause to bad results. Also, the bad performance of considering this condition
to estimate the tilting parameter was obvious in our pre-simulation studies. For this
reason, it seems using the mentioned method in Eq. (27) is necessary to estimate the
tilting parameter.

For simplicity, we define the following notations,

M=EGr( —8)(ECWU)Z =1z, =0)—m* (Z, 1)),
H=E(l—-nU,Z)(cW)—-m*(Z,y)SWU,Z,B)—m(Z,y))),

S 1)
1= 252 U8+ (1 1) FO@ 0P =0

+ HM™'[(1 = 8)r —8E(r|s = 0)(x " (V) — DI(c(U) — m*(Z, B)),

and define A as the variance of random variable 1. Now, we can construct the following
theorem when tilting parameter is unknown.
Theorem 2 Suppose the conditions given in the Appendix hold. For true values of B
and y from Eq. (27), we have:
A D 1
@) Vn(Brpw —B) — N, T'AT™)
A D 1 e
Vn(Baug — ) — NO, T'AT™H),
SnBra—B) 2> N©O, TTHATY,

. D
®) Lipw(B,y) — ,01,1PWX12,1 +;02,IPWX122 + - +Pd,1PWXﬁd,
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~ D
lAug(ﬂz y) —> pl,Angﬁl + PZ,Angﬁz + -+ pd,Angﬁd,

- D
[1ABY) —> p1.1aXT 1 + P2 1aXE s + -+ pa1aX]y.

The weights p; jpw, pi aug and p; 14,1 =1, ..., d are the eigenvalues of B_lfi,
A~'A and A~ A, respectively. In this theorem, the empirical log-likelihood distribu-
tion of IPW method is similar to results of the first theorem. In this case, the coefficients
of chi-square distribution are different. Moreover, the empirical log-likelihood distri-
butions of augmented methods are different in comparison to the results of Theorem 1.
This difference follows by the second lemma which is specified in the Appendix. The
proof of Theorem 2 and appropriate consistent estimators of unknown functions is
given with details in the Appendix.

4 Simulation study

In this section, we will study the performances of the three mentioned methods. We
divide the simulation study to two sections, wherein Sect. 4.1, we have studied a
general linear model with one covariate and in Sect. 4.2, we have studied a general
linear model with two covariates. To see performances of the proposed methods,
we have implemented several cases of missing data mechanism by different rates
of the missingness in variables. Also, we have considered several sample sizes to
see the sample size effect on inferences. Moreover, the confidence level to construct
confidence regions is 95% for all methods.

4.1 General linear model with one covariates

For the general linear model of Eq. (1), suppose h(X) = 1 + X, where, X is a
random variable from normal distribution N (0, 1), € is arandom variable from normal
distribution N (0, 0.25) and parameter of the general linear model is equal to 1.

Study 1. Missingness in response

Assume that covariate X is fully observed and missing data occurred in the response
variable Y. The following three missing patterns is given to generate missing data in
the response variable:

Case 1. 71 (xi, yj) = 1/(1 + ¢~ 0% 05y +0.8)y
Case 2. ma(xi, yi) = 1/(1 4 0.5(0.6 + |x;[)e 1),
Case 3. m3(xi, y;) = 1/(1 + ¢~ (0-0xi+0.6yi+1.6))

by which we will have approximately 25%, 25% and 15% rates of missing datain Y,
respectively. Case 1 and Case 3 both are logistic models but with different percentage
of missing data which help us to see the effect of missing rates effects on inferences.
Also, the second pattern is a nonlogistic model with the same rate of missingness to
the Case 1 and used to see performances of proposed methods under the nonlogistic
patterns.
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The Gaussian function is used as a kernel function and bandwidth parameter £ is
estimated by Cross Validation method. 30% rate of the follow-up sample is used to
estimate y by Eq. (27) where c(u) = u is chosen.

Table 1 constructed by 3000 Monte Carlo repetitions. Where, absolute biases (AB)
of estimators, mean square errors (MSE) of estimators, internal range of quantile (IQR)
for 3000 Monte Carlo repetition, coverage probability by normal (CPN) approxima-
tion, coverage probability by empirical log-likelihood (CPEL) approximation, average
widths of confidence intervals by normal (AWCIN) approximation and average widths
of confidence intervals by empirical log-likelihood (AWCIEL) approximation, for
three methods IPW, Aug and IA, are given in Table 1.

From Table 1, by increasing the sample size all three methods have progressive
performances. Also, improvement in results can be seen by decreasing the rate of
missingness. Method IA does not show a good performance for the high rate of miss-
ingness, but its performance improves when the sample size increases. Two other
methods also have approximately the same performances. Where IPW method have
an appropriate coverage probability and it seems that the length of the confidence
intervals for the Aug method are lower than those of the IPW method. Overall in this
study, all three methods lead to good performances unless IA method when we have
the high rate of missingness and small sample size.

Study 2. Missingness on covariate

Assume that response variable Y is fully observed and some individuals of covariate
X are missing by the above patterns. Also, in this case, we apply the similar argument
used in Study 1. Therefore, the rate of missingness will be the same as those of the
last study. Results of this study are given in Table 2.

From Table 2, we can conclude that results are the same as Study 1. But in this
case, IA method have coverage probability at least as good as IPW method. When
missing values happen in covariate variable, Aug method has a better performance
in comparison with two other methods. Also, in this case, IA method has a better
performance in comparison with that of Study 1. Overall in this study, all three methods
have good performances.

4.2 General linear model with two covariates

Study 3. Missingness on the response or a covariate
For general linear model of Eq. (1), suppose h(x) = (xlz, log(4+ x7)), where X and
X5 are random variables from Uniform distributions U (0, 1) and U(—1, 1), respec-
tively. Moreover, it is assumed that 8 = (2, 1).

In this study we assume that missingness in response or covariates follows from
one of the following MNAR mechanisms,

Case 4. mq(x1.;, x2.0, i) = 1/(1 + e~ O6x1i=x2i 4065
Case 5. 7s(x1, %2, yi) = 1/(1 + |x1,; + x4 e~ 0731000,

In both cases, 20.4% of data will be missing approximately. The independent Gaussian
kernels are used to estimate unknown functions where the rate of follow-up is 30%
where c(1) = u is chosen.
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Table 1 Effect of sample sizes, missingness rates, and missingness mechanisms on inferences about param-
eters of a general linear model with one covariate when the response variable is missing not at random

b4 n Method  AB MSE IQR CPN CPEL AWCIN  AWCIEL
b4 50 IPW 0.0449  0.0032  0.0757  0.9463 09447  0.24219  0.2482
Aug 0.0458  0.0034  0.0770 09423  0.9390  0.2343 0.2360
1A 0.0523  0.0046  0.0809 09217 09220  0.2345 0.2447
100 IPW 0.0315  0.0016  0.0536 09533  0.9547  0.1608 0.1636
Aug 0.0319  0.0016  0.0540 09517  0.9527  0.1582 0.1619
1A 0.0353  0.0020  0.0569  0.9327 09353  0.1583 0.1654
150 IPW 0.0261  0.0011  0.0445  0.9503 09473  0.1291 0.1304
Aug 0.0265  0.0011  0.0447 09430 09443  0.1275 0.1306
1A 0.0290  0.0013  0.0473 09223 09233  0.1276 0.1326
f15) 50 IPW 0.0437  0.0030  0.0717  0.9380  0.9377  0.2091 0.2130
Aug 0.0438  0.0030 0.0724 09410 09390 0.2136 0.2163
1A 0.0444  0.0031 0.0731 0.9397 09357  0.2135 0.2170
100 IPW 0.0309  0.0015  0.0499 09380 09370  0.1493 0.1509
Aug 0.0309  0.0015  0.0496 09413  0.9410  0.1522 0.1525
1A 0.0314  0.0016  0.0504  0.9400 09370  0.1522 0.1529
150 IPW 0.0260  0.0011  0.0417 09393 09360 0.1222 0.1229
Aug 0.0258  0.0011  0.0418  0.9440 09367 0.1244 0.1238
1A 0.0111  0.0263  0.0401 09397 09307 0.1244 0.1240
3 50 IPW 0.0419  0.0028  0.0709 09523 09537 0.2177 0.2223
Aug 0.0424  0.0028  0.0716 09453 09467 0.2136 0.2149
1A 0.0452  0.0033  0.0744 09400 09390 0.2138 0.2117
100 IPW 0.0298  0.0014  0.0523 09533 09520 0.1517 0.1540
Aug 0.0300  0.0014  0.0525 09483  0.9460  0.1496 0.1521
1A 0.0326  0.0016  0.0547 0.9347 09370  0.1497 0.1550
150 IPW 0.0246  0.0009  0.0402  0.9463 09457  0.1211 0.1219
Aug 0.0247  0.0010  0.0408  0.9447 09433  0.1198 0.1218
1A 0.0261  0.0011  0.0401 09317 09363 0.1198 0.1232

Where, 3000 Monte Carlo repetitions are used to estimate some criteria (AB absolute bias, MSE mean
square error, /QR internal range of quantile, CPN coverage probability by normal approximation, CPEL
coverage probability by empirical log-likelihood approximation, AWCIN average width of confidence inter-
val by normal approximation, AWCIEL average width of confidence interval with empirical log-likelihood
approximation)

Table 3 is constructed by 3000 Monte Carlos repetitions. In the first part of Table 3,
we have assumed that missingness happened in the response variable and covariates
are fully observed and in the other part of Table 3, we have assumed that missingness
happened in the covariate X; and the other two variables are fully observed. The
coverage probabilities of intervals obtained by different methods are shown by C PN
and C PEL for normal approximation and empirical log-likelihood approximation,
respectively. Also, we have used the MSE to see the performance of estimators of
different methods.
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Table2 Effect of sample sizes, missingness rates, and missingness mechanisms on inferences about param-
eters of a general linear model with one covariate when covariate variable is missing not at random

b4 n Method  AB MSE IQR CPN CPEL AWCIN  AWCIEL
b4 50 IPW 0.0436  0.0030 0.0742 09500  0.9487  0.2444 0.2507
Aug 0.0437  0.0030  0.0740  0.9447  0.9490  0.2390 0.2553
1A 0.0440  0.0031 0.0736 09397  0.9467  0.2394 0.2584
100 IPW 0.0306  0.0015  0.0526 09567 09570  0.1613 0.1645
Aug 0.0307  0.0015  0.0525 09513  0.9607  0.15868  0.1690
1A 0.0308  0.0015  0.0519 09513 09537 0.1587 0.1708
150 IPW 0.0253  0.0010  0.0430 09570  0.9563  0.1258 0.1339
Aug 0.0256  0.0010  0.0436 09507 09593  0.1258 0.1328
1A 0.0258  0.0010  0.0435 09536 09593  0.1258 0.1339
f15) 50 IPW 0.0424  0.0028  0.0708  0.9447 09453  0.2184 0.2230
Aug 0.0425  0.0029  0.0710 09460  0.9527  0.2198 0.2269
1A 0.0428  0.0029  0.0703  0.9440 09493  0.2194 0.2184
100 IPW 0.0299  0.0014  0.0506 09473 09490  0.1509 0.1502
Aug 0.0301  0.0014  0.0505 09483  0.9527  0.1522 0.1590
1A 0.0303  0.0014  0.0510  0.9487 09533  0.1521 0.1565
150 IPW 0.0245  0.0009 0.0416 09553 09533  0.1223 0.1229
Aug 0.0246  0.0009  0.0418 09550 09563  0.1234 0.1257
1A 0.0247  0.0009  0.0419 09527 09523  0.1233 0.1234
3 50 IPW 0.0414  0.0027  0.0700 09510  0.9507  0.2223 0.2271
Aug 0.0417 ~ 0.0027  0.0700  0.9467 09490  0.2179 0.2298
1A 0.0418  0.0027  0.0703 09476  0.9523  0.2180 0.2216
100 IPW 0.0296  0.0013  0.0514 09563 09547  0.1522 0.1545
Aug 0.0297  0.0013  0.0517 09523  0.9570  0.1496 0.1569
1A 0.0296  0.0013  0.0518  0.9553  0.9580  0.1497 0.1582
150 IPW 0.0241  0.0009  0.0398  0.9467 09417 0.1214 0.1223
Aug 0.0243  0.0009  0.0408  0.9407 09457 0.1196 0.1245
1A 0.0243  0.0009  0.0412 09400 09463  0.1196 0.1255

Where 3000 Monte Carlo repetitions are used to estimate some criteria (AB absolute bias, MSE mean
square error, /QR internal range of quantile, CPN coverage probability by normal approximation, CPEL
coverage probability by empirical log-likelihood approximation, AWCIN average width of confidence inter-
val by normal approximation, AWCIEL average width of confidence interval with empirical log-likelihood
approximation)

p R 2 .
1 B1,i — B1 Bri — B2

MSE = — : :
fZ B1 * B2

i=1

where ¢ is the number of repetitions of the Monte Carlo algorithm. In addition, ,3],1-
and B, ; are the estimates of general linear model parameters in the ith repetition of
the Monte Carlo algorithm.
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Table 3 Effect of sample sizes, missingness rates, and missingness mechanisms on inferences about param-
eters of a general linear model with two covariates when Y or X contain missing data

Missed variable n 100 150
bid Method MSE CPN CPEL MSE CPN CPEL
Y Ty IPW 0.0131 0.9453 9553 0.0089 0.9523 0.9590
Aug 0.0134 0.9210 0.9623 0.0092 0.9230 0.9687
1A 0.0136 0.9153 0.9587 0.0093 0.9220 0.9700
5 IPW 0.0127 0.9513 0.9607 0.0085 0.9552 0.9580
Aug 0.0135 0.9247 0.9660 0.0091 0.9237 0.9657
1A 0.0134 0.9253 0.9650 0.0091 0.9230 0.9667
X Y IPW 0.0129 0.9417 9583 0.0088 0.9503 0.9613
Aug 0.0120 0.9420 0.9503 0.0079 0.9550 0.9587
1A 0.0114 0.9477 0.9560 0.0074 0.9583 0.9660
5 IPW 0.0119 0.9553 0.9667 0.0079 0.9560 0.9653
Aug 0.0115 0.9537 0.9540 0.0076 0.9537 0.9527
1A 0.0111 0.9553 0.9590 0.0074 0.9557 0.9563

Where 3000 Monte Carlo repetitions are used to estimate some criteria (MSE rational mean square
error, CPN coverage probability by normal approximation, CPEL coverage probability by empirical log-
likelihood approximation)

From Table 3, when the response variable contains missing data, IPW method has
slightly better performance in comparison to two other methods. However, in this case,
the CPN of the IPW method is more realistic than the CPN of the augmented methods.
The other criteria in terms of performance are not too different. On the other hand, when
covariate X contains missing data, the augmented methods have better performance
in comparison to that of [IPW method in terms of Bias and MSE. In missing at covariate
case, one can prefer the performance of the IA method in comparison to those of the
IPW and Aug methods. Moreover, by increasing the sample size performance of all
methods improve.

The augmented method is used by Wang and Wang (2001) and IA method is intro-
duced by Creemers et al. (2011) to inference about the linear model with missing
on covariates by MAR mechanism. Good performance of these methods is obvious
by results of Table 2 and especially the second part of Table 3 when missing data
happens in covariates. Moreover, when missing happens in covariates, by increasing
the number of covariates their performance improved. However, when missing data
happens in the response variable, the performance of IA method is not as good as the
performance of Aug and IPW methods.

Study 4. Missingness on the response and a covariate

For general linear model of Eq. (1), suppose A (x) = (x1, x% +log(1+ x3)), where
X is arandom variable from Normal distribution N (0, 1) and X» is a random variable
from Uniform distribution U (—1, 1). Moreover, it is assumed that 8 = (1, 1).

In this study, we assume that missing data in response and covariate x| are generated
by one of the following mechanisms:
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Case 6. (X1, X2, yi) = 1/(1 + 67(0A5x1,i+0.5x2.i+0‘25yi))’
Case 7. w7(x1.i, %24, yi) = 1/(1 4+ 0.5|xp,; €023 ~x1.i01),
Case 8. mg(x1,;, %27, yi) = 1/(1 4 e~ (17370.2532.0))

where ¢ and g are both logistic functions. 7 and 7 follow both from MNAR mech-
anisms and g follows from MAR mechanism. By the above missing mechanisms, we
will have 15% missing data on response variable and covariate X . Moreover, by the
above mechanisms, we have assumed that for ith member of the sample, ¥ and X are
both missed or both observed. In addition, we have considered the different functions
of ¢(u) as follow:

o ci(u)=x1+y,
o oo(u) = xi,
o c3(u) =y.

These different functions are considered to see the performance of different logis-
tic function assumption for missingness probability because c(-) function plays an
important role in the estimation of unknown function and specially in the estimation
of tilting parameter. Moreover, the rate of follow-up sample is still 30%. Results of
this study are given in Table 4.

From Table 4, one can conclude that the coverage probability of the IA method is
closed to 0.95 when the missing mechanism has the logistic form. However, by going
away from logistic function, its coverage probability is less than of our expectation
i.e. 0.95. Moreover, IPW and Aug method show good performances in many cases but
the coverage probability of IPW method based on 7 and 7g is more than 0.95. This
is more obvious when the missing mechanism is the sixth mechanism. On the other
hand, the coverage probability of the Aug method decreased similarly to the coverage
probability of the IA method under the seventh mechanism.

By comparing three rows of Table 4, we can say that applying different c(u«) does
not more effects in conclusions. However, we can say if c(#) chosen to be function of
the covariates, it can improve the performance of the augmented methods.

5 Real data study

In this section, the evaporative resistance of male Chinese ethnic clothing dataset is
used to fit a general linear model. This dataset is given in Wang et al. (2016) where
the air layer distribution and evaporative resistances of 39 sets of male Chinese ethnic
clothing were investigated using a sweating thermal manikin and the three-dimensional
body scanning technique. The methods of measuring the data with more details are
given in Wang et al. (2016).

For this dataset, we investigate the relationship between the clothing total evapora-
tive resistance (response variable Y) and the total volume of the air entrapped inside
the clothing (covariate variable X). Wang et al. (2016) have fitted some general lin-
ear model for these variables. They have considered polynomial models with three
parameters but we consider some different model with two parameters. We have stan-
dardized the data to have simple calculations. Moreover, this dataset has been fully
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Table4 Effect of sample sizes, missingness rates, and missingness mechanisms on inferences about param-
eters of a general linear model with two covariates when Y and X contain missing data

c(u) n 100 150
b4 Method MSE CPN CPEL MSE CPN CPEL
ciw) =x1+y e IPW 0.0077 0.9667 0.9793 0.0050 0.9750 0.9865
Aug 0.0079 0.9663 0.9553 0.0050 0.9720 0.9627
1A 0.0172 0.9323 0.9350 0.0120 0.9320 0.9480
7 IPW 0.0077 0.9500 0.9687 0.0053 0.9483 0.9683
Aug 0.0078 0.9477 0.9310 0.0053 0.9487 0.9213
1A 0.0124 0.9283 0.9107 0.0121 0.9317 0.9213
g IPW 0.0068 0.9547 0.9673 0.0043 0.9643 0.9733
Aug 0.0067 0.9540 0.9490 0.0043 0.9650 0.9547
1A 0.0098 0.9336 0.9490 0.0062 0.9417 0.9527
ca(u) = x 6 IPW 0.0076 0.9640 0.9780 0.0049 0.9730 0.9867
Aug 0.0078 0.9627 0.9517 0.0050 0.9703 0.9630
1A 0.0173 0.9470 0.9387 0.0128 0.9573 0.9533
7 IPW 0.0078 0.9522 0.9707 0.0052 0.9540 0.9707
Aug 0.0078 0.9510 0.9336 0.0053 0.9550 0.9287
1A 0.0170 0.9297 0.9213 0.0124 0.9393 0.9273
g IPW 0.0067 0.9510 0.9653 0.0044 0.9653 0.9743
Aug 0.0067 0.9520 0.9463 0.0044 0.9643 0.9547
1A 0.0097 0.9363 0.9510 0.0062 0.9460 0.9557
c3(u)=y 6 IPW 0.0077 0.9670 0.9776 0.0051 0.9717 0.9823
Aug 0.0076 0.9670 0.9497 0.0051 0.9710 0.9557
1A 0.0159 0.9183 0.9110 0.0119 09117 0.9203
7 IPW 0.0078 0.9493 0.9660 0.0053 0.9483 0.9683
Aug 0.0078 0.9470 0.9273 0.0053 0.9487 0.9213
1A 0.0168 0.9230 09117 0.0112 0.9317 0.9213
g IPW 0.0077 0.9567 0.9643 0.0044 0.9620 0.9727
Aug 0.0076 0.9550 0.9470 0.0044 0.9623 0.9520
1A 0.0099 0.9357 0.9467 0.0064 0.9430 0.9483

Where 3000 Monte Carlo repetitions are used to estimate some criteria (MSE rational mean square
error, CPN coverage probability by normal approximation, CPEL coverage probability by empirical log-
likelihood approximation)

observed. Therefore, in order to see the performance of used methods, we generate
missing data by the MNAR mechanism in covariate by the following mechanisms:

Case 9. mo(xi, vi) = 1/(1 + e—(0.75+0.5x,-+l.5xi2+0.5yl-))’

Case 10. mo(x;, yi) = 1/(1 + 0.5¢7¥%),

Based on the ninth mechanism, we will have approximately 24.2 % rate of missing data
in the covariate variable and based on the tenth mechanism, we will have approximately

24.5 % rate of missing data in the covariate variable. We have considered the following
general linear models:
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Fig.2 Fitted models to the standardized dataset of the evaporative resistance of male Chinese ethnic clothing

Model 1: y = Bo + Bi1x

Model 2: y = Bo + Bix2
Model 3: y = Bo + Bisin(2mx)
Model 4: y = Box + B1x2

In addition to estimation of parameters, we have tested Hy : S = 0 assumption,
where 8 = (Bo, B1)” . Results of this study are given in Table 5. The standardized data
together with fitted models are given in Fig. 2 and the approximate 95% confidence
regions for parameters of Model 4 are given in Fig. 3.

From Table 5, We can say that Models 2 and 3 cannot be appropriate to this dataset
because we can not reject Hyp : B = 0 assumption at level 0.01. In addition, there is
no reason to reject Hy : B = 0 assumption at level 0.001 for Models 1 and 4 and they
can be considered as the useful models. However, in this paper, our aim was not to
find the best model but by our proposed model we have estimated parameters and we
have tested some assumption about the parameters of the general linear model. The
fitted models and the confidence regions of parameters based on model 4 are given in
Figs. 2 and 3, respectively.
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Fig. 3 Confidence regions for parameters of Model 4. The regions with a solid curve, a dotted curve, and
a dashed curve show the IPW, IA, and Aug methods confidence regions, respectively. The plots in a show
the confidence regions based on the ninth mechanism and the plots in b show the confidence regions based
on the tenth mechanism. Moreover, the right shapes are based on the normal approximation and the left
shapes are based on the empirical log-likelihood ratio method

From Fig. 3, the shapes of confidence regions are oval based on the normal approx-
imation. When we use the empirical log-likelihood ratio to construct confidence
regions, their shapes are similar to an ellipse.

6 Discussion

In our simulation studies, we have used the independent Gaussian kernel func-
tions where unknown bandwidth parameters have been estimated by cross-validation
method. The kernel function can be selected differently and it does not affect the infer-
ences. But, choosing the bandwidth parameter is more critical than choosing the kernel
function and it may affect the inferences. As mentioned, we have used cross-validation
method where its good performances have been studied by many researchers.

The simulation study showed that Our three used methods have acceptable results.
The IPW method has a more stable performance in comparison with the two other
methods. On the other hand, IA method has fewer biases and MSE’s for parameters
in comparison with the other methods. However, our simulation study is based on the
small sample size and by increasing sample size, we have expected an improvement
in the performances of our methods.

Appendix

To achieve our conclusions, we assume that regularity conditions to be hold (Wang
and Wang 2001). These conditions are as follow:
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(1) m(v) is bounded and has partial derivatives up to order 2 almost surely.

(2) Kernel function kj,(.), is continuous and is from order r. It is always at least from
order 2.

(3) The density function of Z, f(z), exists and has bounded derivatives up to at least
order 2.

(4) The conditional expectations E(S|Z = z) and E(SST|Z = z) exist and have r
continuous and bounded partially derivatives with respect to v.

(5) For the score function S, E(SST) exists and is positive definite.

6) n, = (nh? + (nh2d )71 converges to zero as n goes to infinity. Where d is the
dimension of vector Z.

(7) The matrices, A and B, defined in Sect. 3, are positive definite.

The following Lemma is necessary for proving mentioned theorems in Sect. 3. In any
cases, we just proof parts (b) of lemmas and theorems with details. Proof of the other
parts can be concluded in a similar manner to proof of part (b). However, the details
of proof of part (a) are given anywhere which is necessary.

Lemma 1 Under the regularity conditions, for known values of y and true parameter
B, we have

1 n

@ —= val 1pw(B) —> N, A), ;gx/u,mw(ﬂw&w(ﬂ) 2. B, 28
1 n

® — Zwl s (B) => NO.A), -~ Ew,-,mgw)w,&ug(ﬂ) LA )

1 1
© — Z ViaaB) > NO AL = YiaB] a8 > A (30)
i=1

i=1

Proof For left hand side of part (b), we can write:
di n
S , i
IZ‘”’ Aug(B) = f Z (i, B) + ( i<v,->) iz, v)

- s o 4 1
_ﬁgm (Uzaﬂ)'i‘( _M)m(zl’y)‘FOP( ).

The last equation follows from the fact, mi(z;, ¥) = m(z;, y) + op (1) where its proof
is given by many authors such as Kim and Yu (2011). Therefore, we can rewrite the
above equation as follow:

1 n
ﬁ Z 1lfi,Aug(ﬂ)

&
Sy, .
fzm o ﬁ”( (v ))m(z 7)
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i ﬁ;(ﬁi(vi m(vz)>( (v, ) = mzi, v))
+op()=J1 + 2 +op(l). 31

By using equal function of 7 (v;) from Eq. (10), J, will be,

= Z 8i(1 = a(z)e’ ) — 14 a(z)e’ ““D)(S(i, B) — m(zi. v))
i=1

1 ORI
= Z 8ie”<M) @ (1) — a(@))(S(i. ) — m(zi, y))

i=1

n " (1= 8)Kn(zi. 2
—Zéiewfkswi,ﬂ)—m(zi,y»(Z"l( DB D) —a(z,->).

S i=1 Y18V MKy (2, 2))
Also, the last equation follows from Eq. (9). It is easy to prove that:
] n yc(uj) 1 n 1 B
;;Sje Kh(Zi,Zj)=;jZl$j —n(vj) — 1) (zj)Kn(zi, zj).

Also, based on Eq. (5), by applying Strong Low of Large Numbers (SLLN) and some
mathematical operations, we can conclude:

= Z ( ) a M@ Kni zj) =~ (@) fEE = 8lzi) + op (D),
77(“/)
where, f(z;) is the density function of Z;. Therefore, we can write J, as follow,

1 n u
h=— Y8 (S, B) = mzi v))

i=1
125 =8)) — a(z)8;e" "N Ky (zi, 25)
) (Z (@) fGE( — dlz) For®

f25 i0W)(S(i, p) = m(zi. )

1 ijl((l —8;) —a(z)8;e" UMKy (zi, 2j)
: (Z F@EQ = 5[2) For®

_ 1§y 8000SW f) = mGi.y)
i Es f@EQ=5)

x (1= 38;) —a(z)8;e"““NKy(zi, zj) + op(1).
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For enough large sample sizes, by using SLLN for inner summation of the above
equation, it is easy to prove that,

1 n
S = ﬁ Z((l —38;) =8;0W;)ESV,B) —=m(Z,y)|zj,8 =0) +op(l)

\/_Z((l —8;0W))IESV,Blzj, 6 =0) —m(z;,y))

+ op(l) =0p(1).

By combining J; and J> in Eq. (32), we will have:

1 < 1 & & 5;
Tﬁgwi,Aug(ﬁ):ﬁgms(vi,ﬂ)-l—(l p— ))m(z,,y)+op(1)

It is very simple to get that E(J; + J2) = op(1) and var(J; + J») = A. Therefore,
the left hand side of the part (b) of Lemma 1 can be concluded by the Central Limit
Theorem (CLT). On the other hand, we can write the right hand side of the part (b) of
Lemma 1 as:

1 r
=D Vi ug BV 4y (B)

i=1
S\ . 2
=_Z( ﬂ)+<1 : )m(zm/)>
1 8 2
= ( i B) + ( '>m(zi,7/)) +op(1)
I s 8 RS
T (ﬁ (”ﬂ”( n(w))m(z“”)

1< 5; 2
- S Is Is
+nZ<(()<v ﬁ”( ())"”(Z ”)

—(3—S<v ﬂ)+< —‘S—)m( >)2 +op()
W)~ W) " P

= .]1 + -12 +0P(1),

where J3' is equivalent to

n

*_] S; di
i =532 (st ) S

i=
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+1—5"2—1—‘S"2 L ))?
< :%(v») ( m) )

5 (8 5 (1% Vs .
* (ﬁ(v»( _ﬁ(vi))_ﬂvi)( _ﬁ(vi)» v Fmzi. v))

== J2*1 + J2*2 + J2*3

It is easy to prove that, %ZLI 1S2(vi, B)| = E(S2(V, B)) + op(1), %Z?:l |m?2
(zi. Bl = Em*(Z,B)) + op(1) and 137 [S(v;, Bym(zi, B)] = E(S(V,p)
m(Z, B)|) + op(1). Furthermore, by the regularity condition (1) and consistency of
7 (to prove that # = 7 + op(1), it is enough to prove consistency of & because
based on the Eq. (10), 7(v) = (1 + a(z, y)e?“™)~1. By applying SLLN to & in
Eq. (24), Based on the regularity conditions (2), (3) and (6), we can conclude that
a(z, y) = % + op(1). This with Eq. (8) gives the constancy of &.), we can

conclude thatsup|% - #| =op(1), sup|(1 — ﬁfin)z —(1— nf;}[))2| =op(1)

8,‘ 5,‘ 8,‘ 8,‘ - .
and sup|m(l — m) — W(l — mﬂ = op(1). Therefore, we can write:

175

IA

|30+ 17551 + 1351

1
=Y 187, B xsup( )
ni:l
s\’ s \?
(1-70) ~(-20)
7 (v;) 7 (v;)

&; ) 8; §; ! &; ‘
7 (vi) ( B ﬁ(v»)  A(w) ( B :%(vi)) '

Thus, by the above notations, we can conclude that Jz* = op(1). Therefore, we will
have:

di di
A2(v) 72 (vi)

IA

+ |m?(zi, B)| X sup

+ |S(vi, B)m(z;, B)| x sup

1 " 1 n 8; 8; 2
= i BV B) = (—S(v,-, B) + (1 - m) m, y))

i=1 o i)

The above equation by applying SLLN gives the right hand side of Lemma 1(b). As
mentioned, proof of part (c) is very similar to the proof of part (b), therefore we ignore
it. Also, for part (a) in a similar way to part (b), we can write:

@ Springer



Empirical likelihood inference in general linear...

1 & 1 & &
— i = — —S(v;,
N ;:1 Yi.rpw(B) NG ;:1 7o) (vi, B)

:LXn: % s ﬂ)+( i o )(v B).
R ICo N ni) AT

By applying the same operations used for J> to the second summation of right hand
side of the above equality, we can write:

1 n
= l —S l?
ﬁgw,mw(ﬂ) ; oy S B

Z((l —8;0W;)E(S(V, p)lzi, 6 =0)
+ Op(l) =op(l).

By replacing equivalent functions of O(v;) and E(S(V, B)|zi,6 = 0), and some
simple mathematical operations we will have:

1 & S 8
= i = —S l’ 11 1
ﬁglﬁ,mw(ﬂ) Zl oy S ﬂ)+( p—r ))m(z B) +op(1).

Therefore, by the above equation and CLT, we can conclude the left hand side of
Lemma 1(a). On the other hand, we have:

1< 1< S 2
- ; Viirw BV pw (B) =~ > (n oy S ﬂ))
S 2
(—’S(v,,m)
7w (v;)
(& 8i

1 2
+;;<n(vl> o )) S(i, B))

S(-) and 7 (-) are bounded and 7 — m = op(1). Therefore, we can conclude that
second summation of the above equality is equal to op (1). Therefore, we can write:

n

1 & 1 8
;Zwi,mw(ﬂ)wﬂpw(ﬂ) = Z(TS(vl,ﬂ)> +op(1).
i=l1

Now by applying SLLN to right hand side of the above equation, we can conclude the
right hand side of Lemma 1(a). O
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Lemma 2 Under the regularity conditions, for estimated values of y from validation
sample and true parameter B, we have

1 & U
@) %ZW:’,IPW(,B) = NO A =Y viaew BV pw(B) > B, (32)
i= i=1

1 n
(b) —= Zw, Aug(B) —> N (0, A), =D Vi augBYiL aug (B) A (33

i=1

© —= Zm 14(8) = N(0, &), - Zwi,mwwm(ﬂ) Ny (34)
i=1

Proof Also in this case, we only prove the part (b). Therefore, for Augmented method
we have:

1 & 1 « S n R
LS — S, —— )i, ),
\/ﬁ;w’f\ 5P = n;: 7/) (v ﬂ)+< i(UivJ/))m(Z 7

define,

Ji(y) =

m(zi,y) i=1,...,n,

S, B) + (1 —

51 5[ >
7 (i, y) A (vi, y)

Therefore we will have:
S s ® = 23 )
«/71 - i,Aug = \/E - iy
1 & .
=7 ;(mw + (D) = Ji()))
1« 0J; .
2-11+12+;Z% ly=yo V(P — ). (35)
i=1

In the above equation, J; and J, are defined the same as that of proof of Lemma 1 and

the last statement is concluded from the Intermediate Value Theorem. On the other
hand, we have,

aJi(y)
dy

1
=4 <1 - A—> (c(ui) —m*(zi, y)(SW;, B) —m(zi, y))
(v, ¥)

di N R
+ <1 - = )(E(S(V,ﬁ)C(U)IZi,b‘ =0) —m*(zi, y)m(zi, y)).
(i, y)
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By SLLN we will have:

1i 3Ji (y)
n ay

=

1
=E (8( - 1) U —m*(Z,y)(SV,B) —m(Z, V))) +op(1)
7(V,y)

=E(1—=a(V,y)U —m*(Z, y)(S(V,B) —m(Z,y))) +op(1)
= H +op(l).

On the other hand, for /n(y — y), we will have:

D o ri(l =8 () — m*(zi, 7)) = 0.

i=1

By rewriting and using the Intermediate Value Theorem, we obtain that

am*(zi, y)

D oril =) (cui) — m* @i yo)) — Y ri(1 = 8) 37

i=1 i=1

ly=y0 Y —v)=0,

where by some mathematical operations, we can conclude from the above equation
that:
n

n 1 am*(Zi, V)
V@ —y) = {; ;Vi(l - Si)T ly=v0

1 n
< D oril = 8)(cui) — m* i o)) = Q7' Q2. (36)
i=1

where,

LN VB2 s 0y s
Q“n;”“ SEE W)z, 8 = 0) — ™ (21, 7))
= E(r(1=8)(E((U)]z.8 = 0) = m*™ (Z.y)) + 0p(1) = M + 0p(1).

For 0>, we have
1 - * * 7%
0, = NG D ril = 8) (i) — m* i, ) +ri (1= 8)(m* (zi, y) — ™ (20, v))
i=1
1 n
-7 D (= 8)(ui —m* (2. v))
i=1
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er,<1 8§)m*(zi, y) — m* (zi. ¥)) = 021 + On.

For Q22, it is easy to prove that

1 " 8;e7CUD) (m*(zi, y) — i) Kn(zi, 7))
0= LY 1 gy Z U ST ) S
Vi i=1 > i8I Ky(zi, z))

= i in(l _ gy dieT o G ) = e K 7))

1).
a Nz f@)E( =8|z, 8 = 0) For®

n2 iy j=1

By applying SLLN and some mathematical operations for inner summation of the
above equation, we can conclude that:

1 <& ) r(1 =38)(c(U) —m™(Z,y)Ky(Z,z;)
- ove)) J
@n=-"7 Z‘S’e E ( a1z f ) E(I — 8]z, 8 = 0) > +or(l)

= \/_ZS E(r|8_0)< ) 1>(uj—m*(2j73/))+01>(1)~
j

Therefore,

02 = 0+ 0 = —= (1 = 8 — 5113 =)
2 = 21 22_«/ﬁi:1 ri i iL(rjo =

1
X ( - 1)) (c(uj) —m*(zi, y)) +op(D).  (37)

7 (v;)

By combining Q1 and Q> in Eq. (37), it is concluded that

Vi@ —y) = Z (ri(1 = &) = 8 E(r|8 = 0)

1
x ( - 1)) (c(ui) —m*(zi, y)) +op(l). (38)
7 (v;)

Finally by inserting Eq. (39) in Eq. (36) and using the obtained details from Eq. (36),
we have:

1 n 81’
7 ; Vi Aug(B) = f Z{ S B) + ( — y)) mzi.y)

+ HM™! <r,~(1—51~)—5,-E(r|5=0)( : —1))
7 (vi, ¥)
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x (c(ui) —m*(zi, ¥)).

Therefore, the left hand side of Lemma 2(b) can be concluded by applying CLT. Where
A is the variance of the following variable,

$ 8
= ——S(V, Z, HM™!
=T ( ﬂ)+< (V)>m( y) +

(r(l —8) —8E(r|s =0) < (lv) )) (c(U) =m*(Z,y)). (39)

In a similar way to the proof of right hand side of Lemma 1(b), we can show,

1 " n 3 (S 2
;Zl/fi,Aug(ﬁ)wZAug(ﬁ) = Z <ﬁs(vl3 B) + < (v )>m(Zz, V))
i=1

Therefore, By the above equation and SLLN, we can conclude the right hand side
of Lemma 2(b). Also, The proof of part (c) is very similar to part (b), therefore we
ignore it. Moreover, part (a) obtains in a similar way to proof of Lemma 1(a) and for
simplicity, we ignore its details. O

Proof of Theorem 1

For the augmented method, we have:

_ 1 n Z/ 1 WijoS(zj,uj.B) _
Tl,Aug “n Zl 1 H‘Z Wi, o S(Z] u;,B) =0
(40)
i =t Wigor h@h ()
TZ’A"‘E “n Zi:] 1_;,_2/71 ;].O)LTS(Z],MJ B)

=0.
Taylor expansion of above equations at (3, 0) are as follow:
971, Aug (B.0 9T1, Aug (B.0
0= Ti aug = T1,aug (B, 0) + 4P (B — ) + LB G — 0) 4 0p(3,)

0= To.aug = Ta.aug (B. 0) + 22D (f — gy 4 T2uelBO (G —0) 4 0p (1),

(4D
where in Eq. (42) after obtaining derivatives with respect to (8, A), they are eval-
uated in (B8,0). Also 7, =|| B — B8 || + | A |. Note that T7 4,,(B8,0) =

\/LZ Y Z?:l WijoS(zj,uj, B) and T> aue(B,0) = 0, so we can conclude from
last equation that:

[ . A } - p-! [—% i Z'}zl WijoS(zj,uj, B) +0P(7:n)i| . @
:3_.3 OP(Tn)
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where in Eq. (43),

aTl,Aug(ﬁsO) 3T1,Aug(/3a0)
D B a8 |
T2, 4ug(L,0) 9T2 aug(B.0) | 1(B.1)=(B.0)

ar 28
: 1 0V 4 B)
_ | e K Visus B g (B) X =55 43)
B Ly i P) 0 ,
1= 8/3
d 1,AlU, ’
where, 377, n 5 g(ﬂ) = X ﬂ(i,y)h(xi)hT(xi)+(1 o y))E(h(X)hT(X)|
zi,6 = 0) Therefore
1
P i aug (B) \ 2
1 i, A
(ﬁ i T )
0 _1 ' Vi, Aug (B)
= 8ﬁ
X 3"//1 u (ﬁ) n } . (44)
{ Ly s s S Vi aug BV 4 ()

Now, by combining Eqs. (43) and (45) and some simple mathematical operations, we
can conclude that:

l n
5 a i,Au 1
V1 Baug — vi.a g(ﬁ )> (—ﬁ > jw,-,Augw)) +op(1)
i=1

n

h(x»hT(xl)

1

n T[(Zl7
i=1

-1

n=(i
-

1
X ﬁzwi,Aug(,B) +op(D). (45)
i=1

1 - E(h(X)h™ (X)lzi, 6 = 0))
(Zlv )

Equation (46) and Lemma 1(b) by using SLLN give the following result:

Vi Baug — B) > N©O, T AT™Y). (46)

This proves the second part of Theorem 1(a) for the augmented method. To prove sec-
ond part of Theorem 1(b), consider Taylor expansion of second order for the empirical
log-likelihood ratio of augmented method with respect to parameter X at 0, i.e.,

. . Al a0 (M 020 40 (M
Paug (%) = Faug ) o+ om0y 2s @) 3 _yr Pl Aus @)

20 tho(k—o)‘i‘o(l),

(47)
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dpug) oo Vaug(B) Plag® _ oy Vaus BV iy, )
where, =5 = 22 imt Tt paven 2 5 T = T2 Xint Ty, 0
Therefore, the empirical log-likelihood ratio will be as follow:

Laug ) =273 Wi aug(B) = 27D Wi aug BIW] aug (BIL +0p (1), (48)

i=1 i=1

n "/fi,Aug (,5)

5\ is the solution of Zi:] m
i,Aug

= 0, thus by expanding of this equation we

can get A as follow:

= Vi, Aug(B) . T = T
0= E = E i Au A E i Au ; A 1).
(A + AT aug(B)) glwﬂgWH_ ﬁ]WAgUﬂ%AMw)+WK)
49)

i=1

Therefore for enough large sample size, we will have:

n -1 n
b= (Z wi,Augwwaug(ﬂ)) (Z wi,Augw)) +op(l). (50)

i=1 i=1

Finally by combining Eq. (49) with Eq. (51), we conclude that

n T n -1 n
Laug = (Z Vi, Aug (ﬁ)) (Z Vi, aug BV g (ﬂ)) (Z Vi, Aug (ﬂ)) +op(D).
i=1 i=1 i=1

(5D
Lemma 1(b) and the relation between normal distribution and chi-square distribution
together with the above equation give the second part of Theorem 1(b). The proof of
third parts of Theorem 1(a) and (b) are very similar to the proof of second parts of this
theorem, therefore we ignore it. By the similar arguments used in the proof of the first
part of Theorem 1(a), we can write following equalities in [PW case:

n

71 n
~ 1 Y; 1
JaGipw — ) = (; > W) (ﬁ 3 w,-,zpww)) +op(l)

i=1

=<1Z T (xp)
n

= i y)

s

) —1
+ (1 _ E(h(X)hT (X)|zi, 8 = 0)>>
7( )

l n
x WZ%,IPW(/S) +op (D). (52)
i=1
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The above equation and Lemma 1(a) with CLT give the first part of Theorem 1(a).
Moreover, In a similar way, we can write:

T -1

Lpw =Y _vipw®B ) (D virrwBV pw(B)

i=1 i=l1

> Yirpw(B) ) +op(). (53)

i=1

Now, the first part of Theorem 1(a) follows by the above equation and Lemma 1(a).

Proof of Theorem 2

Proof of Theorem 2 follows by the same methods used in Theorem 1 by applying
Lemma 2 instead of Lemma 1. Therefore, we ignore the details of the proof of The-
orem 2. Also, needing to Lemma 2 in proof of Theorem 2 caused to have different
asymptotic distributions in comparison to Theorem 1.
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