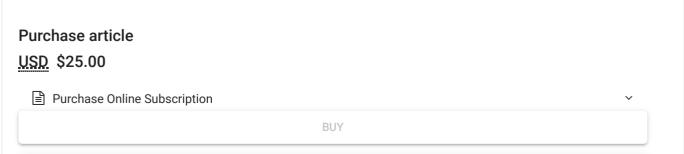


This site uses *cookies*, tags, and tracking settings to store information that help give you the very best browsing experience.

Physiology International


Print ISSN: 2498-602X

Keywords: exercise intensity; heart rate deflection point; maximal lactate steady state; S.D_{max} mode

Physiology International

Volume/Issue: Volume 108: Issue 1

Agreement between heart rate deflection point and maximal lactate steady state in young adults with different body masses

CHECK FOR UPDATES

Authors: R. Afroundeh 1, P. Hofmann², S. Esmaeilzadeh^{1,3}, M. Narimani¹, and A.J. Pesola³

DOI: https://doi.org/10.1556/2060.2021.00004

Pages: 137-150

Publication Date: 23 Apr 2021

Online Publication Date: 20 Mar 2021

Article Category: Research Article

Abstract

We examined the agreement between heart rate deflection point (HRDP) variables with maximal lactate steady state (MLSS) in a sample of young males categorized to different body mass statuses using body mass index (BMI) cut-off points. One hundred and eighteen young males (19.9 \pm 4.4 years) underwent a standard running incremental protocol with individualized speed increment between 0.3 and 1.0 km/h for HRDP determination. HRDP was determined using the modified D_{max} method called $S.D_{max}$. MLSS was determined using 2-5 series of constant-speed treadmill runs. Heart rate (HR) and blood lactate concentration (La) were measured in all tests. MLSS was defined as the maximal running speed yielding a La increase of less than 1 mmol/L during the last 20 min. Good agreement was observed between HRDP and MLSS for HR for all participants (\pm 1.96; 95% CI = -11.5 to \pm 9.2 b/min, ICC = 0.88; \pm 0.001). Good agreement was observed between HRDP and MLSS for speed for all participants (\pm 1.96; 95% CI = -0.40 to \pm 0.42 km/h, ICC = 0.98; \pm 0.001). The same findings were observed when participants were categorized in different body mass groups. In conclusion, HRDP can be used as a simple, non-invasive and time-efficient method to objectively determine submaximal aerobic performance in nonathletic young adult men with varying body mass status, according to the chosen standards for HRDP determination.

BROWSE TITLES

SUBJECTS

SUBSCRIPTIONS

FREQUENTLY ASKED QUESTIONS

FOR AUTHORS

¹ Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, Islamic Republic of Iran

^{| &}lt;sup>2</sup> Exercise Physiology, Training & Training Therapy Research Group; Institute of Human Movement Science, Sport & Health; University of Graz, Austria

^{| 3} Active Life Lab, South-Eastern Finland University of Applied Sciences, Mikkeli, Finland

IRR		

ABOUT US

JOURNALS

TERMS OF USE

PRIVACY POLICY

CONTACT US

NEWSLETTER

OUR BLOG

AKADEMIAI.HU

SCIENTIFIC CONFERENCES

ONLINE DICTIONARY

Copyright Akadémiai Kiadó

AKJournals is the trademark of Akadémiai Kiadó's journal publishing business branch.

Powered by PubFactory